5 research outputs found

    Atomic electrostatic maps of point defects in MoS2

    Get PDF
    In this study, we use differential phase contrast images obtained by scanning transmission electron microscopy combined with computer simulations to map the atomic electrostatic fields of MoS2 monolayers and investigate the effect of sulphur monovacancies and divancancies on the atomic electric field and total charge distribution. A significant redistribution of the electric field in the regions containing defects is observed, with a progressive decrease in the strength of the projected electric field for each sulphur atom removed from its position. The electric field strength at the sulphur monovacancy sites is reduced by approximately 50% and nearly vanishes at the divacancy sites, where it drops to around 15% of the original value, demonstrating the tendency of these defects to attract positively charged ions or particles. In addition, the absence of the sulphur atoms leads to an inversion in the polarity of the total charge distribution in these regions.The authors would like to acknowledge that this project has received funding from the EU Framework Program for Research and Innovation H2020, Scheme COFUND-Cofunding of Regional, National and International Programs, under grant agreement no. 713640. This work was supported by FCT, through IDMEC, under LAETA, project no. UIDB/50022/2020. R.M.R. acknowledges the FCT grant UIDB/FIS/04650/2020-2023. D.A. acknowledges the Presidential Early Career Award for Scientists and Engineers (PECASE) through the Army Research Office (W911NF-16-1-0277) and a National Science Foundation grant (ECCS-1809017). R.M.R. acknowledges support by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020

    Solid Electrolytic Substrates for High Performance Transistors and Circuits

    Get PDF
    Ionic liquids/gels have been used to realize field-effect-transistors (FETs) with two dimensional (2D) transition metal dichalcogenides (TMDs) [1]. Although near ideal gating has been reported with this biasing scheme, it suffers from several issues such as, liquid nature of the electrolyte, its humidity dependency and freezing at low temperatures [2]. Recently, air-stable solid electrolytes have been developed, thanks to the advancement in battery technology [3]. Although insulator-to-metal transition has been reported, the realization of 2D TMD FETs on solid electrolytic substrate has not been reported so far to the best of our knowledge [4]. In this work, we demonstrate a lithium ion (Liion) solid electrolytic substrate based TMD transistor and a CMOS amplifier, with near ideal gating efficiency reaching 60 mV/dec subthreshold swing, and amplifier gain ~34, the highest among comparable inverte

    Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers

    Get PDF
    Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2 and p-type WSe2 transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices

    A complete laboratory for transport studies of electron-hole interactions in GaAs/AlGaAs ambipolar bilayers

    Get PDF
    We present GaAs/AlGaAs double quantum well devices that can operate as both electron-hole (e-h) and hole-hole (h-h) bilayers, with separating barriers as narrow as 5 nm or 7.5 nm. With such narrow barriers, in the h-h configuration, we observe signs of magnetic-field-induced exciton condensation in the quantum Hall bilayer regime. In the same devices, we can study the zero-magnetic-field e-h and h-h bilayer states using Coulomb drag. Very strong e-h Coulomb drag resistivity (up to 10% of the single layer resistivity) is observed at liquid helium temperatures, but no definite signs of exciton condensation are seen in this case. Self-consistent calculations of the electron and hole wavefunctions show this might be because the average interlayer separation is larger in the e-h case than the h-h case

    Progress in Contact, Doping and Mobility Engineering of MoS2: An Atomically Thin 2D Semiconductor

    No full text
    Atomically thin molybdenum disulfide (MoS2), a member of the transition metal dichalcogenide (TMDC) family, has emerged as the prototypical two-dimensional (2D) semiconductor with a multitude of interesting properties and promising device applications spanning all realms of electronics and optoelectronics. While possessing inherent advantages over conventional bulk semiconducting materials (such as Si, Ge and III-Vs) in terms of enabling ultra-short channel and, thus, energy efficient field-effect transistors (FETs), the mechanically flexible and transparent nature of MoS2 makes it even more attractive for use in ubiquitous flexible and transparent electronic systems. However, before the fascinating properties of MoS2 can be effectively harnessed and put to good use in practical and commercial applications, several important technological roadblocks pertaining to its contact, doping and mobility (µ) engineering must be overcome. This paper reviews the important technologically relevant properties of semiconducting 2D TMDCs followed by a discussion of the performance projections of, and the major engineering challenges that confront, 2D MoS2-based devices. Finally, this review provides a comprehensive overview of the various engineering solutions employed, thus far, to address the all-important issues of contact resistance (RC), controllable and area-selective doping, and charge carrier mobility enhancement in these devices. Several key experimental and theoretical results are cited to supplement the discussions and provide further insight
    corecore