193 research outputs found

    Directional-dependent thickness and bending rigidity of phosphorene

    Get PDF
    The strong mechanical anisotropy of phosphorene combined with the atomic-scale thickness challenges the commonly employed elastic continuum idealizations. Using objective boundary conditions and a density functional-based potential, we directly uncover the flexibility of individual α, β and γ phosphorene allotrope layers along an arbitrary bending direction. A correlation analysis with the in-plane elasticity finds that although a monolayer thickness cannot be defined in the classical continuum sense, an unusual orthotropic plate with a directional-dependent thickness can unambiguously describe the out-of-plane deformation of α and γ allotropes. Such decoupling of the in-plane and out-of-plane nanomechanics might be generic for two-dimensional materials beyond graphene

    MIS-aligned Student Perspectives of Outsourcing and Offshoring

    Get PDF
    Outsourcing and offshoring (sourcing) aspects of IS functions have been common organizational activities for decades.However, the landscape is evolving. Organizations are shifting from primarily single vendor-client sourcing relationshipstoward innovative multi-vendor relationships integrated into organizational strategic plans. Current students are tomorrow’sleaders, and as such it is critical that IS programs teach cutting edge strategic sourcing concepts. We analyzed studentperceptions of the pros and cons of sourcing and found that current students largely anchor to a limited number of conceptsthat may be outdated and not representative of today’s competitive sourcing landscape. Current organizational trends insourcing require a different skill set for IS managers than those required in the past. More must be done to inform students ofcurrent trends in order to prepare them for the skills needed to be effective in their future IS roles. A framework of requiredskills for future IS managers is offered

    Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species

    Get PDF
    We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals

    Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica

    Get PDF
    Background Xylitol is a commercially important chemical with multiple applications in the food and pharmaceutical industries. According to the US Department of Energy, xylitol is one of the top twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however, expensive and energy intensive. In contrast, the biological route using microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts and biomass which can be sourced from renewable carbon originating from a variety of cheap waste feedstocks. Result In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica, an oleaginous yeast which was firstly grown on a glycerol/glucose for screening of co-substrate, followed by media optimisation in shake flask, scale up in bioreactor and downstream processing of xylitol. A two-step medium optimization was employed using central composite design and artificial neural network coupled with genetic algorithm. The yeast amassed a concentration of 53.2 g/L xylitol using pure glycerol (PG) and xylose with a bioconversion yield of 0.97 g/g. Similar results were obtained when PG was substituted with crude glycerol (CG) from the biodiesel industry (titer: 50.5 g/L; yield: 0.92 g/g). Even when xylose from sugarcane bagasse hydrolysate was used as opposed to pure xylose, a xylitol yield of 0.54 g/g was achieved. Xylitol was successfully crystallized from PG/xylose and CG/xylose fermentation broths with a recovery of 39.5 and 35.3%, respectively. Conclusion To the best of the author’s knowledge, this study demonstrates for the first time the potential of using Y. lipolytica as a microbial cell factory for xylitol synthesis from inexpensive feedstocks. The results obtained are competitive with other xylitol producing organisms

    Pathogen and human NDPK-proteins promote AML cell survival via monocyte NLRP3-inflammasome activation

    Get PDF
    A history of infection has been linked with increased risk of acute myeloid leukaemia (AML) and related myelodysplastic syndromes (MDS). Furthermore, AML and MDS patients suffer frequent infections because of disease-related impaired immunity. However, the role of infections in the development and progression of AML and MDS remains poorly understood. We and others previously demonstrated that the human nucleoside diphosphate kinase (NDPK) NM23-H1 protein promotes AML blast cell survival by inducing secretion of IL-1β from accessory cells. NDPKs are an evolutionary highly conserved protein family and pathogenic bacteria secrete NDPKs that regulate virulence and host-pathogen interactions. Here, we demonstrate the presence of IgM antibodies against a broad range of pathogen NDPKs and more selective IgG antibody activity against pathogen NDPKs in the blood of AML patients and normal donors, demonstrating that in vivo exposure to NDPKs likely occurs. We also show that pathogen derived NDPK-proteins faithfully mimic the catalytically independent pro-survival activity of NM23-H1 against primary AML cells. Flow cytometry identified that pathogen and human NDPKs selectively bind to monocytes in peripheral blood. We therefore used vitamin D3 differentiated monocytes from wild type and genetically modified THP1 cells as a model to demonstrate that NDPK-mediated IL-1β secretion by monocytes is NLRP3-inflammasome and caspase 1 dependent, but independent of TLR4 signaling. Monocyte stimulation by NDPKs also resulted in activation of NF-κB and IRF pathways but did not include the formation of pyroptosomes or result in pyroptotic cell death which are pivotal features of canonical NLRP3 inflammasome activation. In the context of the growing importance of the NLRP3 inflammasome and IL-1β in AML and MDS, our findings now implicate pathogen NDPKs in the pathogenesis of these diseases

    Identification of CFTR variants in Latino patients with cystic fibrosis from the Dominican Republic and Puerto Rico

    Full text link
    BackgroundIn cystic fibrosis (CF), the spectrum and frequency of CFTR variants differ by geography and race/ethnicity. CFTR variants in White patients are wellâ described compared with Latino patients. No studies of CFTR variants have been done in patients with CF in the Dominican Republic or Puerto Rico.MethodsCFTR was sequenced in 61 Dominican Republican patients and 21 Puerto Rican patients with CF and greater than â â â â 60â mmol/L sweat chloride. The spectrum of CFTR variants was identified and the proportion of patients with 0, 1, or 2 CFTR variants identified was determined. The functional effects of identified CFTR variants were investigated using clinical annotation databases and computational prediction tools.ResultsOur study found 10% of Dominican patients had two CFTR variants identified compared with 81% of Puerto Rican patients. No CFTR variants were identified in 69% of Dominican patients and 10% of Puerto Rican patients. In Dominican patients, there were 19 identified CFTR variants, accounting for 25 out of 122 disease alleles (20%). In Puerto Rican patients, there were 16 identified CFTR variants, accounting for 36 out of 42 disease alleles (86%) in Puerto Rican patients. Thirty CFTR variants were identified overall. The most frequent variants for Dominican patients were p.Phe508del and p.Ala559Thr and for Puerto Rican patients were p.Phe508del, p.Arg1066Cys, p.Arg334Trp, and p.I507del.ConclusionsIn this first description of the CFTR variants in patients with CF from the Dominican Republic and Puerto Rico, there was a low detection rate of two CFTR variants after full sequencing with the majority of patients from the Dominican Republic without identified variants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153634/1/ppul24549.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153634/2/ppul24549_am.pd
    corecore