12 research outputs found

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC

    Mapping of variations in child stunting, wasting and underweight within the states of India: the Global Burden of Disease Study 2000–2017

    Get PDF
    Background To inform actions at the district level under the National Nutrition Mission (NNM), we assessed the prevalence trends of child growth failure (CGF) indicators for all districts in India and inequality between districts within the states. Methods We assessed the trends of CGF indicators (stunting, wasting and underweight) from 2000 to 2017 across the districts of India, aggregated from 5 × 5 km grid estimates, using all accessible data from various surveys with subnational geographical information. The states were categorised into three groups using their Socio-demographic Index (SDI) levels calculated as part of the Global Burden of Disease Study based on per capita income, mean education and fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using coefficient of variation (CV). We projected the prevalence of CGF indicators for the districts up to 2030 based on the trends from 2000 to 2017 to compare with the NNM 2022 targets for stunting and underweight, and the WHO/UNICEF 2030 targets for stunting and wasting. We assessed Pearson correlation coefficient between two major national surveys for district-level estimates of CGF indicators in the states. Findings The prevalence of stunting ranged 3.8-fold from 16.4% (95% UI 15.2–17.8) to 62.8% (95% UI 61.5–64.0) among the 723 districts of India in 2017, wasting ranged 5.4-fold from 5.5% (95% UI 5.1–6.1) to 30.0% (95% UI 28.2–31.8), and underweight ranged 4.6-fold from 11.0% (95% UI 10.5–11.9) to 51.0% (95% UI 49.9–52.1). 36.1% of the districts in India had stunting prevalence 40% or more, with 67.0% districts in the low SDI states group and only 1.1% districts in the high SDI states with this level of stunting. The prevalence of stunting declined significantly from 2010 to 2017 in 98.5% of the districts with a maximum decline of 41.2% (95% UI 40.3–42.5), wasting in 61.3% with a maximum decline of 44.0% (95% UI 42.3–46.7), and underweight in 95.0% with a maximum decline of 53.9% (95% UI 52.8–55.4). The CV varied 7.4-fold for stunting, 12.2-fold for wasting, and 8.6-fold for underweight between the states in 2017; the CV increased for stunting in 28 out of 31 states, for wasting in 16 states, and for underweight in 20 states from 2000 to 2017. In order to reach the NNM 2022 targets for stunting and underweight individually, 82.6% and 98.5% of the districts in India would need a rate of improvement higher than they had up to 2017, respectively. To achieve the WHO/UNICEF 2030 target for wasting, all districts in India would need a rate of improvement higher than they had up to 2017. The correlation between the two national surveys for district-level estimates was poor, with Pearson correlation coefficient of 0.7 only in Odisha and four small north-eastern states out of the 27 states covered by these surveys. Interpretation CGF indicators have improved in India, but there are substantial variations between the districts in their magnitude and rate of decline, and the inequality between districts has increased in a large proportion of the states. The poor correlation between the national surveys for CGF estimates highlights the need to standardise collection of anthropometric data in India. The district-level trends in this report provide a useful reference for targeting the efforts under NNM to reduce CGF across India and meet the Indian and global targets. Keywords Child growth failureDistrict-levelGeospatial mappingInequalityNational Nutrition MissionPrevalenceStuntingTime trendsUnder-fiveUndernutritionUnderweightWastingWHO/UNICEF target

    Prohibition of importation, manufacturing and sale of Smokeless Tobacco (SLT) products: what is the Global Scenario?

    No full text
    Background Over the past 10 years, the WHO FCTC has served as a powerful tool to initiate, support, and advance national and global tobacco control efforts. However success of FCTC, but must not be allowed to conceal the fact that the job of tobacco control is far from done. This paper examines the tobacco legislations of various countries ratifying WHO FCTC with an objective to ascertain the status of prohibition of importation, sale and manufacturing of smokeless tobacco products. In addition, experiences of some countries that prohibit the sale, import or manufacture of these products were also studied. Methods A literature search was conducted using PubMed, Google scholar, tobaccocontrollaws.org databases for all articles from January 1st, 2005 to May 2017 with the following search terms in the title, abstract, or keywords: ´smokeless tobacco', 'snuff', 'chewing tobacco', 'dip tobacco', 'tobacco regulation', 'SLT ban', tobacco', or 'SLT import ban', 'SLT sale ban', 'SLT manufacturing'. In the first stage of screening, an internal protocol was used to screen the titles and abstracts for all records according to a pre-defined selection criteria . In the second stage of search the WHO FCTC reports, previous CoP reports, WHO expert consultation reports were scrutinized to obtain desired information. Results The sale of smokeless tobacco products is prohibited in 42 Parties of the world that have ratified WHO FCTC and their laws are available in English language. Most of these bans are partial. Ten countries have prohibited manufacturing SLT products and five countries have imposed ban on its importation. The impact of these bans has been different for different countries. Conclusions A comprehensive tobacco control strategy with effective tobacco cessation programme needs to be formulated that assists SLT users in quitting. In addition, multi-sectoral efforts are needed for effective implementation of the bans imposed by Governments

    Regulation of toxic contents of smokeless tobacco products

    No full text
    Effective regulation of contents of tobacco products is one of the primary milestones to reduce negative health effects associated with the use of smokeless tobacco (SLT) products. As per the available sources, testing of some SLT products has been done on ad hoc basis, but there is a lack of comprehensive and periodic analysis of these products. In addition, the available results indicate huge variations among the levels of pH, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosonornicotine, benzo[a]pyrene, heavy metals and nicotine within different products as well as within different brands of the same product. This review was aimed to throw light on the variations and gaps in testing of SLT products and emphasize the need for strong policy regulation for monitoring the chemical constituents of these products

    The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017

    No full text
    Summary: Background: Air pollution is a major planetary health risk, with India estimated to have some of the worst levels globally. To inform action at subnational levels in India, we estimated the exposure to air pollution and its impact on deaths, disease burden, and life expectancy in every state of India in 2017. Methods: We estimated exposure to air pollution, including ambient particulate matter pollution, defined as the annual average gridded concentration of PM2.5, and household air pollution, defined as percentage of households using solid cooking fuels and the corresponding exposure to PM2.5, across the states of India using accessible data from multiple sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. The states were categorised into three Socio-demographic Index (SDI) levels as calculated by GBD 2017 on the basis of lag-distributed per-capita income, mean education in people aged 15 years or older, and total fertility rate in people younger than 25 years. We estimated deaths and disability-adjusted life-years (DALYs) attributable to air pollution exposure, on the basis of exposure–response relationships from the published literature, as assessed in GBD 2017; the proportion of total global air pollution DALYs in India; and what the life expectancy would have been in each state of India if air pollution levels had been less than the minimum level causing health loss. Findings: The annual population-weighted mean exposure to ambient particulate matter PM2·5 in India was 89·9 μg/m3 (95% uncertainty interval [UI] 67·0–112·0) in 2017. Most states, and 76·8% of the population of India, were exposed to annual population-weighted mean PM2·5 greater than 40 μg/m3, which is the limit recommended by the National Ambient Air Quality Standards in India. Delhi had the highest annual population-weighted mean PM2·5 in 2017, followed by Uttar Pradesh, Bihar, and Haryana in north India, all with mean values greater than 125 μg/m3. The proportion of population using solid fuels in India was 55·5% (54·8–56·2) in 2017, which exceeded 75% in the low SDI states of Bihar, Jharkhand, and Odisha. 1·24 million (1·09–1·39) deaths in India in 2017, which were 12·5% of the total deaths, were attributable to air pollution, including 0·67 million (0·55–0·79) from ambient particulate matter pollution and 0·48 million (0·39–0·58) from household air pollution. Of these deaths attributable to air pollution, 51·4% were in people younger than 70 years. India contributed 18·1% of the global population but had 26·2% of the global air pollution DALYs in 2017. The ambient particulate matter pollution DALY rate was highest in the north Indian states of Uttar Pradesh, Haryana, Delhi, Punjab, and Rajasthan, spread across the three SDI state groups, and the household air pollution DALY rate was highest in the low SDI states of Chhattisgarh, Rajasthan, Madhya Pradesh, and Assam in north and northeast India. We estimated that if the air pollution level in India were less than the minimum causing health loss, the average life expectancy in 2017 would have been higher by 1·7 years (1·6–1·9), with this increase exceeding 2 years in the north Indian states of Rajasthan, Uttar Pradesh, and Haryana. Interpretation: India has disproportionately high mortality and disease burden due to air pollution. This burden is generally highest in the low SDI states of north India. Reducing the substantial avoidable deaths and disease burden from this major environmental risk is dependent on rapid deployment of effective multisectoral policies throughout India that are commensurate with the magnitude of air pollution in each state. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India
    corecore