8 research outputs found

    A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes

    Get PDF
    A methodology for rapid, high-purity isolation of plasma membranes using superparamagnetic nanoparticles is described. The method is illustrated with high-resolution proteomic, glycomic and lipidomic analyses of presenilin-deficient cells

    An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer

    Get PDF
    The selective expression of CD137 on cells of the immune system (e.g., T and DC cells) and oncogenic cells in several types of cancer leads this molecule to be an attractive target to discover cancer immunotherapy. Therefore, specific antibodies against CD137 are being studied and developed aiming to activate and enhance anti-cancer immune responses as well as suppress oncogenic cells. Accumulating evidence suggests that anti-CD137 antibodies can be used separately to prevent tumor in some cases, while in other cases, these antibodies need to be co-administered with other antibodies or drugs/vaccines/regents for a better performance. Thus, in this work, we aim to update and discuss current knowledge about anti-cancer effects of anti-CD137 antibodies as mono- and combined-immunotherapies

    Surface functionalization dependent subcellular localization of Superparamagnetic nanoparticle in plasma membrane and endosome

    No full text
    Abstract In this article, we elaborate the application of thermal decomposition based synthesis of Fe3O4 superparamagnetic nanoparticle (SPMNP) in subcellular fractionation context. Here, we performed surface functionalization of SPMNP with phospholipids and dimercaptosuccinic acid. Surprisingly, we observed surface functionalization dependent SPMNP localization in subcellular compartments such as plasma membrane, endosomes and lysosomes. By using SPMNP based subcellular localization with pulse–chase methodology, we could use SPMNP for high pure-high yield organelle (plasma membrane, endosomes and lysosome) fractionation. Further, SPMNP that are distinctly localized in subcellular compartments can be used as technology for subcellular fractionation that can complement existing tools for cell biology research. As a future perspective, isolated magnetic organelles can be extended to protein/protein complex purification for biochemical and structural biology studies

    Advances in CRISPR-Cas9 for the Baculovirus Vector System: A Systematic Review

    No full text
    The baculovirus expression vector systems (BEVS) have been widely used for the recombinant production of proteins in insect cells and with high insert capacity. However, baculovirus does not replicate in mammalian cells; thus, the BacMam system, a heterogenous expression system that can infect certain mammalian cells, was developed. Since then, the BacMam system has enabled transgene expression via mammalian-specific promoters in human cells, and later, the MultiBacMam system enabled multi-protein expression in mammalian cells. In this review, we will cover the continual development of the BEVS in combination with CRPISPR-Cas technologies to drive genome-editing in mammalian cells. Additionally, we highlight the use of CRISPR-Cas in glycoengineering to potentially produce a new class of glycoprotein medicines in insect cells. Moreover, we anticipate CRISPR-Cas9 to play a crucial role in the development of protein expression systems, gene therapy, and advancing genome engineering applications in the future

    Gene gymnastics:Synthetic biology for baculovirus expression vector system engineering

    No full text
    International audienceMost essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach
    corecore