59 research outputs found

    Modification of the MOOG spectral synthesis codes to account for Zeeman broadening of spectral lines

    Full text link
    In an attempt to widen access to the study of magnetic fields in stellar astronomy, I present MOOGStokes, a version of the MOOG one-dimensional LTE radiative transfer code, overhauled to incorporate a Stokes vector treatment of polarized radiation through a magnetic medium. MOOGStokes is a suite of three complementary programs, which together can synthesize the disk-averaged emergent spectrum of a star with a magnetic field. The first element (a pre-processing script called CounterPoint) calculates for a given magnetic field strength, wavelength shifts and polarizations for the components of Zeeman sensitive lines. The second element (a MOOG driver called SynStokes derived from the existing MOOG driver Synth) uses the list of Zeeman shifted absorption lines together with the existing machinery of MOOG to synthesize the emergent spectrum at numerous locations across the stellar disk, accounting for stellar and magnetic field geometry. The third and final element (a post-processing script called DiskoBall) calculates the disk-averaged spectrum by weighting the individual emergent spectra by limb darkening and projected area, and applying the effects of Doppler broadening. All together, the MOOGStokes package allows users to synthesize emergent spectra of stars with magnetic fields in a familiar computational framework. MOOGStokes produces disk-averaged spectra for all Stokes vectors (I, Q, U, and V), normalized by the continuum. MOOGStokes agrees well with the predictions of INVERS10 a polarized radiative transfer code with a long history of use in the study of stellar magnetic fields. In the non-magnetic limit, MOOGStokes also agrees with the predictions of the scalar version of MOOG.Comment: 10 pages, 4 figures Accepted for publication by the Astronomical Journal. Code and tutorial available at http://www.mpia.de/~dee

    Constructing a spectral photometer for the study of light pollution

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaf 22).In this paper, I describe a method and apparatus for carrying out a systematic spectroscopic mapping I([lambda], z, [Phi]) of the night sky, as proposed by Stefano Rosoni. Once completed, this method should prove to be simple and effective, while the SLR film camera spectral photometer constructed and described within should prove to be inexpensive and easily reproducible. The spectral photometer is simply a single slit diffraction apparatus mounted to the rear of a telescope. The resulting interference pattern is recorded as an image projected on the film inside the camera. In order to correlate the image recorded on the film to a spectrum containing information about the intensity and wavelength of the light pollution, the photographs were scanned into digital format and analyzed by a series of computer programs. While a film spectral photometer is in itself, nothing new, the computer algorithm used to extrapolate film response curves was developed by Paul Debeveck and Jitendra Malik for use in computer graphics. I apply their algorithm to the problem of calibration of a spectral photometer and bypass the myriad of tedious and time consuming calibrations which make film cameras almost more trouble than they are worth. Problems from the unsuccessful first prototype are discussed, as well as suggested improvements for further versions PACS numbers: 95.45. + i, 95.55.Qf, 95.75.P

    A Grism Design Review and the as-built performance of the silicon grisms for JWST-NIRCAM

    Full text link
    Grisms are dispersive transmission optics that find their most frequent use in instruments that combine imaging and spectroscopy. This application is particularly popular in the infrared where imagers frequently have a cold pupil in their optical path that is a suitable location for a dispersive element. In particular, several recent and planned space experiments make use of grisms in slit-less spectrographs capable of multi-object spectroscopy. We present an astronomer-oriented general purpose introduction to grisms and their use in current and future astronomical instruments. We present a simple, step-by-step procedure for adding a grism spectroscopy capability to an existing imager design. This procedure serves as an introduction to a discussion of the device performance requirements for grisms, focusing in particular on the problems of lithographically patterned silicon devices, the most effective grism technology for the 1.1-8 micron range. We begin by summarizing the manufacturing process of monolithic silicon gratings. We follow this with a report in detail on the as-built performance of parts constructed for a significant new space application, the NIRCam instrument on JWST and compare these measurements to the requirements.Comment: Accepted for publication in PAS

    Infrared wavefront sensing for adaptive optics assisted Galactic Center observations with the VLT interferometer and GRAVITY: operation and results

    Full text link
    This article describes the operation of the near-infrared wavefront sensing based Adaptive Optics (AO) system CIAO. The Coud\'e Infrared Adaptive Optics (CIAO) system is a central auxiliary component of the Very Large Telescope (VLT) interferometer (VLTI). It enables in particular the observations of the Galactic Center (GC) using the GRAVITY instrument. GRAVITY is a highly specialized beam combiner, a device that coherently combines the light of the four 8-m telescopes and finally records interferometric measurements in the K-band on 6 baselines simultaneously. CIAO compensates for phase disturbances caused by atmospheric turbulence, which all four 8 m Unit Telescopes (UT) experience during observation. Each of the four CIAO units generates an almost diffraction-limited image quality at its UT, which ensures that maximum flux of the observed stellar object enters the fibers of the GRAVITY beam combiner. We present CIAO performance data obtained in the first 3 years of operation as a function of weather conditions. We describe how CIAO is configured and used for observations with GRAVITY. In addition, we focus on the outstanding features of the near-infrared sensitive Saphira detector, which is used for the first time on Paranal, and show how it works as a wavefront sensor detector.Comment: 12 pages, 8 figures, accepted for publication in Instruments (open access journal from mdpi

    The GRAVITY Coud\'e Infrared Adaptive Optics (CIAO) system for the VLT Interferometer

    Full text link
    GRAVITY is a second generation instrument for the VLT Interferometer, designed to enhance the near-infrared astrometric and spectro-imaging capabilities of VLTI. Combining beams from four telescopes, GRAVITY will provide an astrometric precision of order 10 micro-arcseconds, imaging resolution of 4 milli-arcseconds, and low and medium resolution spectro-interferometry, pushing its performance far beyond current infrared interfero- metric capabilities. To maximise the performance of GRAVITY, adaptive optics correction will be implemented at each of the VLT Unit Telescopes to correct for the effects of atmospheric turbulence. To achieve this, the GRAVITY project includes a development programme for four new wavefront sensors (WFS) and NIR-optimized real time control system. These devices will enable closed-loop adaptive correction at the four Unit Telescopes in the range 1.4-2.4 {\mu}m. This is crucially important for an efficient adaptive optics implementation in regions where optically bright references sources are scarce, such as the Galactic Centre. We present here the design of the GRAVITY wavefront sensors and give an overview of the expected adaptive optics performance under typical observing conditions. Benefiting from newly developed SELEX/ESO SAPHIRA electron avalanche photodiode (eAPD) detectors providing fast readout with low noise in the near-infrared, the AO systems are expected to achieve residual wavefront errors of \leq400 nm at an operating frequency of 500 Hz.Comment: to be published in Proc. SPIE vol. 8446 (2012

    Hyperpolarized 13C-Pyruvate Metabolism as a Surrogate for Tumor Grade and Poor Outcome in Renal Cell Carcinoma-A Proof of Principle Study.

    Get PDF
    Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer
    corecore