
CONSTRUCTING A SPECTRAL PHOTOMETER

FOR THE STUDY OF LIGHT

POLLUTION

A Senior Honors Thesis

by

CASEY PATRICK DEEN

Submitted to the Office of Honors Programs

& Academic Scholarships
Texas A&M University

in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2004

Major: Physics

CONSTRUCTING A SPECTRAL PHOTOMETER

FOR THE STUDY OF LIGHT

POLLUTION

A Senior Honors Thesis

by

CASEY PATRICK DEEN

Submitted to the Office of Honors Programs

& Academic Scholarships
Texas ARM University

in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOW

Approved as to style and content by:

orge Kattawar
(Fellows Advisor)

. . ~a ~
Edward A. Funkhouser

(Executive Director)

April 2004

Major: Physics

ABSTRACT

Constructing a Spectral Photometer for the Study of

Light Pollution. (April 2004)

Casey Patrick Deen
Department of Physics
Texas ARM University

Fellows Advisor: Dr. George Kattawar

Department of Physics

In this paper, I describe a method and apparatus for carrying out a systematic

spectroscopic mapping I(k, z, 8) of the night sky, as proposed by Stefano Rosoni. Once

completed, this method should prove to be simple and effective, while the SLR film

camera spectral photometer constructed and described within should prove to be

inexpensive and easily reproducible. The spectral photometer is simply a single slit

diffraction apparatus mounted to the rear of a telescope. The resulting interference

pattern is recorded as an image projected on the film inside the camera. In order to

correlate the image recorded on the film to a spectrum containing information about the

intensity and wavelength of the light pollution, the photographs were scanned into

digital format and analyzed by a series of computer programs. While a film spectral

photometer is in itself, nothing new, the computer algorithm used to extrapolate film

response curves was developed by Paul Debeveck and Jitendra Malik for use in

computer graphics. I apply their algorithm to the problem of calibration of a spectral

photometer and bypass the myriad of tedious snd time consuming calibrations which

make film cameras almost more trouble than they are worth. Problems from the

unsuccessful first prototype are discussed, as well as suggested improvements for

further versions
PACS numbers: 95. 45. + i, 95. 55. Qf, 95. 75. Pq

DEDICATION

This work is dedicated to my father, who taught me the value of patience and

persistence in scientific pursuits, and to my mother, who has put up with more than her

share of my "experiments. "

ACKNOWLEDGMENTS

Thanks are due to the following people for their help with the construction and

development of this project: Don Carona of the Texas A&M Observatory, Dr. Donald

Naugle, Days Rathnayaka, Maryna Anatska, Saeed Adegbenro, Erin Kueht, and Mandy

Deen.

I would like to thank my advisor, Dr. George Kattawar, of the Texas A8rM Department

of Physics for his suggestions and guidance through this project.

This research was supported by a Grant In Aid of Research, administered by Sigma Xi,

the Scientific Research Society.

ABSTRACT.

TABLE OF CONTENTS
Page

. . 111

DEDICATION.

ACKNOWLEDGMENTS. .

. . 1V

TABLE OF CONTENTS. . . . V1

LIST OF FIGURES.

LIST OF TABLES. .

V111

. . 1X

INTRODUCTION.

PROBLEM. .

METHODOLOGY. .

Construction of the Spectral Photometer. .
Reciprocity. .
Data Acquisition.
Calibration of Photographic System.

DISCUSSION OF ALGORITHM. .

3
7

. . 8
. . 10

Translating the Algorithm: Goblin. c++
Modifying the Algorithm: Gandalf. c++.
Auxiliary Programs: Hobbit. c.

OBSTACLES.

RECOMMENDATIONS.

12
. . 14
. 16

17

. . 19

CONCLUSION. . 21

REFERENCES. . . 22

APPENDIX A: Darkroom Procedures.

APPENDIX B: Computer Code.

1. Goblin. c++. . . .
2. Gandalf. c++.
3. Hobbit. c.

. 23

. 25

. 25
. 29
. 32

VITA.

Page
. 35

viii

LIST OF FIGURES

Figure

I Camera mounted on EasyPix SLR camera adapter.

Page

2 Apparatus mounted on telescope

3 Slit construction.

4 Adapter Plate

5 Light Shield. .

6 Hurter-Driffield Curve for Kodak 400CN film. . .

7 Spectrum of an incandescent light.

8 Spectral Sensitivity for Kodak BW400CN film.

9 Set of 12 images of varying shutter speeds used to test Goblin. c++.

Output of Goblin. c++.

13

14

LIST OF TABLES

Table Page

I Spectral Photometer Components. .

METHODOLOGY

Construction of the Spectral Photometer

Table I: Spectral Photometer Components

Orion SteadyPix SLR Camera Mount

Olympus 2000 SLR camera

Olympus 35-70mm Lens

Close focus lens

Shutter Release Cable

2" x 2" Diffraction Grating — 1000 lines per mm

Kodak T400 CN film

1 3/8" ID aluminum tube with 20 threads per inch on one end.

Brass shim stock

Card stock

The materials required to construct the spectral photometer are listed in Table 1. As

shown in Figure 1, the camera is mounted on the Easy Pix camera mount, which is in

turn mounted to the aluminum tube extension, which is mounted to the rear of the

telescope via an eyepiece holder, as shown in Figure 2. The slit, which was constructed

using two pieces of card stock and two pieces of brass shim stock (see Figure 3), has a

separation of 2. 5 mm. The slit is sandwiched between the eyepiece holder and the

Reciprocity

Film reciprocity is defined as the characteristic of film which produces a given

density (opacity) when exposed to a certain amount of light. This relation can be

summarized through a Hurter-Driffield curve (See Figure 6), which plots the optical

KODAK

PROFESSIONAL BW400CN Film

Characteristic Curves

4. 0
Exposure: Daylight
Deoeltemetry: Status M

Log H Ref: -1 44

3. 0

I 20
ut
O

1. 0

0. 0
%. 0 4. 0 -2. 0 -1. 0 0, 0 1. 0

LOG EXPOSURE guxeutoonda)

Figure 6. Hurter-Driffield Curve for Kodak 400CN film. Source: (Kodak a)

density of film versus the logarithm of the exposure (EAt, where E is the irradiance and

At is the shutter speed). Under normal photographic conditions, where exposures are

between 1/10, 000 of a second, and a few seconds, reciprocity holds, i. e. the density of

the film is proportional to the amount of light striking the film. However, if the

exposure time is lengthened to the order of tens of seconds or more, reciprocity begins

to fail, meaning that the density of the film is no longer proportional to the amount of

light which struck the film during the exposure. Reciprocity failure was not thought to

be an issue for this experiment, because Kodak CN400 film, which does not suffer

reciprocity failure until exposures longer than 120 seconds, was the film of choice

(Kodak a).

Data Acquisition

In order to take data, the apparatus was connected to the telescope by way of the

eyepiece mount, as detailed in the Construction section. The telescope acts as simply a

light gathering device. Without the telescope, the diffracted light, which is orders of

magnitude dimmer than the incident light, is just simply too dim to overcome the

reciprocity failure of the film.

Once the telescope and apparatus are mounted on the telescope stand, the

telescope should be trained on an area of interest, recording the zenith and azimuthal

angles. Using a cable release, the shutter on the camera should be opened for a

predetermined amount of time, usually on the order of several minutes. The tracking

system on the telescope mount, if available should not be enabled. The zenith /

azimuthal dependence of the light pollution will not change with the rotation of the

earth, as the sources of light pollution are terrestrial and rotate with the earth.

Once a roll of film is exposed, it should be taken to a photo lab to have the

negatives developed. The negatives are then taken to the darkroom, where positives are

developed according to the procedures described in Appendix A. It is important to note

that the procedures and chemicals in Appendix A are not the only procedures or

chemicals that will work. However, it is vital that the SAME procedures used in the

10

Calibration of Photographic System

Any photographic system incorporates many non-linear mappings in the process

of recording an image to film, photograph paper, or digital storage. Said another way,

given two pixels, one twice as "bright" as the other, this does not imply that the light

represented by the first pixel is twice as intense as the light represented by the second

pixel (Debevec 1997).

To reliably correlate pixel brightness with intensity, the photographic system

must be calibrated. In order to calibrate the system, an incandescent lamp with a

dimmer dial should be used to create several different spectra of varying intensity. For

each spectrum, several photographs should be taken with the spectral photometer, each

with a different shutter speed. These images should then be fed into the computer

algorithm described in the next section. The algorithm will extrapolate the film

response curve for each wavelength of light, and relate the exposure time of an image

and a pixel value to an intensity value. Only then can the intensity of different

wavelengths be reliably compared. The algorithm used in this project was derived from

the algorithm presented in Debevec and Malik and is described in detail in the next

section.

11

DISCUSSION OF ALGORITHM

As stated above, the main algorithm on which this research is based was presented by

Debevec and Malik. The original intent for the algorithm was for use in computer

4. 0

3. 0

KODAK
PROFESSIONAL BW400CN Film

Spectral-Sensitivity Curves

Effective Exposure: 1/100 Sec
Process: C-41
Densitomstry: Status M

Density: 0. 2 above D-mtn

I-
co 2. 0 x
ro

8
1. 0

0. 0
250 300 350 400 450 500 550 600 650 700 750

WAVELENGTH (nm)

*Senslevlty = reciprocal ot exposure (erg/cnt') required
to produce spectded density

Figure 8. Spectral Sensitivity for Kodak BW400CN film. Source: (Kodak a)

graphics, to improve virtual renderings of physical objects. By measuring the change in

brightness for several different pixels in the picture, each through several different

shutter speeds, the algorithm extracts a film response curve, which relates the amount of

light passing through the shutter, to a digital brightness value. The algorithm, while

quite powerful, is limited by the spectral response of the photographic system. As their

paper states, the film response curve is accurate to a factor of the spectral sensitivity of

12

the camera/film. For the purpose of scanning images for virtual renderings, it is

sufficient to ignore this artifact. Unfortunately, the aim of a spectral photometer is to

measure relative/absolute intensities of different wavelengths of light. Depending

mostly on the film used, the spectral sensitivity varies widely with wavelength, as

shown in Figure 8, so any response curve calculated from the entire spectrum would

average all the variations in spectral sensitivity, which is undesirable for use in a

spectral photometer. However, all is not lost, as a different response curve can be

calculated for each individual wavelength of light. The only drawback to this is that it

requires a great deal more pictures to be taken for calibration of the apparatus.

The implementation of the algorithm as described in Debevec and Malik's 1997

paper calls for a scene with a wide range of intensity values to be photographed several

times with each exposure at a different shutter speed. Once the images are digitized, the

algorithm picks out a number of pixels throughout the image and examines how the

intensity values of those pixels change throughout the different exposures.

Translating the Algorithm: Goblin. c++

Before setting about modifying Debevec and Malik's algorithm, it was

necessary to first ensure that the original algorithm could be made to work. To this end,

a C++ version of the Matlab algorithm was written using the JAMA (Java Matrix

Library) and TNT (Template Numerical Toolkit) mathematics packages for C++

devloped by the National Institute for Standards and Technology on their website at

http: //math. nist. gov. To test it, pictures were taken of an indoor scene with a digital

camera (Figure 9). Since this was not the final product, the digital camera was chosen

for ease of transfer to the digital format, although a film camera could have been used

just as well. Fifty pixels were then selected from throughout the scene and the

(

I'I I

14

g(z) - Ln(lrraciance'anuaer 0 ua Pixel value (z)

'g 2 cul' r

ur 4 c

50 150 200 250 300 350
Pixel Value

Figure 10. Output of Goblin. c++. g(z) relates pixel values the natural logarithm of the

exposure. Source: Author

Modifying the Algorithm: Gandalf. c++

Atter successfully translating the original algorithm from Matlab to C++, the

algorithm was then modified to attack the problem of calibration of a spectral

photometer. In order to do this, a slight paradigm shift was necessary in the way

individual photographs were used. The original algorithm required N pictures of unique

exposure times and selected P pixels from throughout the scene to extrapolate a film

response curve for the entire photograph. As stated above, a film response curve for the

entire spectrum will not work for this application because of the wide variance in

spectral response. Instead, each wavelength must be treated as its own separate

photographic system, each with its own separate response curve. This means that

several sets of images must be taken. Within each set, images must vary the shutter

15

speed, and each entire set must be taken of a different spectrum of light. Each column

in entire set of photographs of a certain spectrum of light corresponds to a "pixel" in an

overall "picture" of that particular wavelength. This can be accomplished by using an

incandescent lamp with a dimmer switch. The dimmer switch can be used to vary the

intensity of the light

The drawback to this approach is the length of the calibration process. In order

to sufficiently over-determine the system of system of linear equations employed by the

algorithm, for a set of N photographs snd P pixels, N~(P-I) must be greater than (Z ~—

Z, „) where Z and Z, „are the brightest (255) and darkest (0) pixel values,

respectively. This means 256 different photographs are required to calibrate the

spectrometer. For this implementation, the number of pixels P will be the number of

different intensity settings for incandescent light. The number of photographs N will be

the number of different shutter speeds in each set of photographs of an intensity setting.

While 256 is quite a large number of photographs to develop in a darkroom at

one time, it only need be done once. Also, for calibration purposes, sheets of contact

prints of many negatives can be made by placing the negatives directly on top of the

photographic paper and exposing all the negatives at once. While the prints will be very

small, they can be enlarged digitally, and the time trade off is more than worth it. Once

the calibration is complete, it can be applied to any spectra taken by the photographic

system.

Once the calibration photographs are stored in the computer, they are fed into

the computer program by way of a data file, containing the names of the images as well

as the shutter speeds for each image. The program then computes the response curve

for each wavelength and the writes that particular response curve to a computer file

16

titled by lambdaXXX. dat where XXX is the horizontal location of the wavelength in

question. These files can later be used to apply the calibration to a spectrum of light

taken as data. The source code for Gandalf c++ is available in Appendix B. 2

Auxiliary Programs: Hobbit. c

In order to prepare the scanned images for use in Gandalf c++, the information

encoded in the . PCX file must first be extracted from the images. Because the spectra

are oriented horizontally, each column of pixels corresponds to a certain wavelength of

light. By averaging over pixel brightness value for the entire column, the program

obtains the average brightness value for that wavelength. Also calculated is the

standard deviation of the columnar distribution corresponding to that particular

wavelength. These averages and standard deviations, and the corresponding x-pixel

positions are then output to a text file for use by Gandalf. c++. The source code for

hobbit. c is shown in Appendix B. 3

17

OBSTACLES

As the project progressed, numerous obstacles became apparent. Originally,

film was to be processed completely and digitally scanned at a I-hour photo lab,

reducing the amount of time and effort required to obtain digital images for processing

with the algorithms. Unfortunately, the photo lab used to develop the film

automatically individually processed each of the exposures to obtain 18'/o brightness in

each print, meaning that each image was processed under a different method.

Unfortunately the algorithm assumes each image has undergone the same development

procedure. The negatives, however, were processed uniformly, and therefore correctly

showed the variations. Because the negatives had been processed uniformly, they could

be used to generate prints in a darkroom and still ensure that each exposure had

undergone the same development process. If a photo lab could have been found which

did not individually process each print, the darkroom procedures would have been

unnecessary.

In the original plans, Kodak TMZ 3200 black and white film was to be used in

the camera, due to its extremely fast ASA speed. This was abandoned, however, due to

the extreme reciprocity failure of the film. At exposures of 100 seconds or more, the

film had lost over 2 stops of reciprocity; in order to expose film for a corrected exposure

time of 100 seconds, the shutter must be open for at least 400 seconds (Kodak b). In

other words, if there was not enough light to record the image on the film in the first

few seconds, it most likely was not going to get recorded. After realizing the severity of

the reciprocity failure, the film was changed to a lower-speed film which did not require

black ck white chemistry to process, Kodak CN400, namely. The CN400 film does not

suffer reciprocity failure until approximately 120 seconds, according to Kodak's

18

technical document on the film (Kodak al

Unfortunately, even with the telescope and the low-speed film, the spectra

turned out to be too dim to be recorded on the film. Even atter a 17 minute exposure,

no discernible image of a spectrum could be seen on the film. The failure of the film to

record any spectrum whatsoever is testament to the fact that while light pollution can be

extremely disrupting to astronomical observation, it is exceedingly difficult to record.

In the next section, I make some suggestions about how to improve the spectrometer to

obtain usable data.

19

RECOMMENDATIONS

The first and foremost recommendation is a change in recording media. While

the original intent of the project was to create a low-budget spectral photometer out of

an ordinary manual camera, it may be necessary to use a digital camera, even a CCD

camera to finally be able to pick up the faint spectrum produced by the light pollution.

While CCD cameras would be idea for the task, they are also quite expensive, running

upwards of a thousand dollars, well out of range for the average amateur astronomer.

One method that was not attempted, but is worthy of consideration is dry-

nitrogen film hypering. When film is "hypered, " it is placed in an environment of

hydrogen gas and baked. This increases the sensitivity of the film and helps combat

reciprocity failure. This would add quite a bit of complexity, however.

Digital cameras, while not as sensitive as CCDs, do hold promise in the fact that

they completely remove film from the process of transferring the image to the

computer, thus eliminating a great deal of headache. Also, one must be careful in

buying a digital camera for this purpose, to ensure that the camera gives the user enough

control over the exposure. For example, one needs to be able to control the length of

the exposure almost indefinitely. Another aspect important to have control over is the

focus. Instead of focusing on the diffraction grating, it is necessary to focus on the

image of the slit, which appears some distance behind the grating.

Another possible way to improve results is to increase the number of photons

entering the camera. This can be achieved by either placing the apparatus on the back

of a larger telescope, or by changing the dispersive element to a blazed holographic

diffraction grating, which has a higher transmission ratio than does a normal diffraction

grating.

20

One practical item which should be addressed in further versions of the spectral

photometer is the problem of locating the beginning of the spectrum in the photographs.

Most of the cropping of the images was haphazardly done by estimation and guess

work, introducing unnecessary error into the algorithm. Perhaps a small LED located in

one of the corners of the diffraction grating could be used to demarcate a reference

point in each image.

Also, while the computer programs are functional and provide useful output,

they are a bit clunky and hard to use. Perhaps a more unified user interface can be

developed, which would allow much easier manipulation of the images.

21

CONCLUSIONS

A method for constructing, calibrating, and operating a low-budget spectral

photometer has been discussed. Although this particular implementation of the spectral

photometer has not proved successful in that the photometer was unable to pick up any

spectrum at all. However, I believe that the methods outlined for calibration and

analysis are useful and applicable. In this respect, the project has been a success. If the

problem of the film reciprocity can be solved, the algorithms outlined in the appendices

will serve to calibrate the spectral photometer and compare the relative intensities of

different wavelengths of light pollution.

By pursuing the goal of a low-budget yet effective spectral photometer, amateur

astronomers around the world will be able to join in the fight against light pollution by

gathering data as to the intensity, wavelength, and angular position in the night sky.

This will help professional astronomers, theorists, and policy makers come up with

better strategies to combat the light pollution which is slowly encroaching on our night

sky.

22

REFERENCES

Debevec, P. and Malik. J. 1997, Recovering High Dynamic Range Radiance Maps from

Photographs, SIGGRAPH 97.

Eastman Kodak. 2004b, Tech Pub F-4036.

Eastman Kodak. 2004a, Tech Pub F-4016.

Reeves, R. 2004, Films compared for Astronomy,

http: //www. robertreeves. corn/filmtest. htm

Rossoni, S. 2000, Proposal of a Spectroscopic Map of Astronomical Sites, Journal of

the Italian Astronomical Society, Vol. 71 No, I, 235-238.

23

APPENDIX A

Darkroom Procedures

To minimize headaches and the need for non-standard equipment and a truly

dark-room, all negatives in this experiment were processed at a photo lab and then

positives were developed in a quasi-dark room using the procedure described below.

Prints were not obtained from the photo lab because the computer program used to

process the prints tried to over or under-expose each exposure to achieve a certain

percentage of light to dark. This results in a non-uniform process, and will not give the

proper film response curve when fed into the algorithm. In the event that a photo lab

can be found which does not auto-correct each exposure, it would be acceptable, even

suggested, to skip this entire process of development, as it is extremely tedious and

difficult.

Materials:

Darkroom set (Enlarger, 2 tongs, 3 developing trays, red safe-light, stopwatch)

~ Small square of transparent plastic

~ Overhead marker

~ Two lightproof containers for undeveloped photo paper

~ Kodak Dekto1 Developer

~ Kodak Stopbath

Kodak Fixer

With the room lights out and the safe-light on, the film was inserted facing

upside down into the enlarger and the spectrum was centered on the paper stage. Then,

an arrow and number were written on the transparent plastic corresponding to the

24

forward direction and exposure number of the film. With the safe-light off, a piece of

photographic paper was removed from the lightproof container and placed on the paper

stage. The small square of transparent plastic was then placed in the upper left corner

of the picture, so that it did not obscure the image projected on the paper. The enlarging

lamp was then tumed on. After 8 seconds, the enlarging lamp was turned off, and the

paper removed from the stage and placed in another lightproof container. This process

was repeated for however many exposures needed to be developed.

After all the prints had been exposed, the enlarger was turned off, and the safe-

light turned on. Single sheets of exposed photographic paper were then taken out of the

second lightproof container and developed one by one. They were first placed in a tray

containing a working solution of Kodak developer for 45 seconds. Then, using the

developer tongs, the print was taken from the developer tray and placed in the stop bath

tray for 30 seconds, exercising care that the developer tongs never touch the stop bath.

Then, using the stop bath tongs, the print was transferred to the fixer tray for a period of

at least a minute. After the fixer, the print was moved using the stop bath tongs to the

sink where it was washed for another two minutes. After the wash, it was hung to dry.

This process was repeated until all the prints had been processed. Only then, could the

normal room lights be turned back on.

25

APPENDIX B

Computer Code

1. Goblin. c++

()include
()include
()include
()include
l)include

&stdio. h&
&stdlib. h&
&string. h&
"tnt, h"
"gama qr. h"

using namespace TNT;
using namespace JHNA)

struct pcx header //

char signature;
char version;
char encoding;
char bytes~er pi. xe
unsigned short int
unsz. gned short int
unsigned short int
unsigned short int
unsigned short int
unsigned short int
char palette[48]z
char reserved;
char color layers;
unsigned short int
unsigned short int
char unused[58)

))

Header format for PCX images

xmin;
ym in;
xmax;
ymax;
vres;
hres;

bytes~sr line;
palette type;

struct pcx struct

pcx header header;
unsigned char * image;
unsz. gned char pallete[768)z
unsigned short int length, height)

)'
const int QTY PIX = 11; /* Number of pi. ctures to be processed */
const float L = 35. 0; /* Smoothness factor &/

const float ZNIN = 0. 0) /* Minzmum Pixel Value */
const float ZNAX = 255. 0; /* maximum pixel Value */

unsigned char bytes~er pixel;

void readpcximage(P'ILK * file, void " target, int size)

unsigned char buf;
unsigned int counter;
i. nt 1=0l

/* Number of times to repeat next byte &/

/* Get next byte */

while(i&=size) /* Image not entirely read? */

/* Get one byte */
freed(&buf, l, l, file);
/* Check the 2 most si. gnificant bits */
if ((buf&192)==192)

/* We have llxxxxxx */
counter=(buf&63);
freed (&buf, 1, 1, fi. le);

26

for(/counter&0)counter--) /* and copy i. t counter times */
(

((char*)target)(i.] buf:
//prrntf("&din", buf);
I++(/* i. ncrease the number of bytes written '/

)

)
else

(
/* Just copy the byte */
((char*) target) [i] buf(
//prrntf("&din", buf);
i++, /* Increase the number of bytes written "/

pcx struct readpcx(FILE *file)
/* return struct. image=NULL if failed, otherwise a pointer to the loaded image '/

(
pcx struct temp;
fseek(file, 0, SEEK SET);
freed(&temp. header, sizeof(pcx header), I, file); /* Reads the pCX header */
if((temp. header. signature' OxOa)[)(temp. header. version~=5)) /* Checks &. f fi. le i. s PCX

format */
(

temp. image = NULL;
return (temp);

)
else
{/* i. t. i. s) */

/s Return height and length */
temp. length temp. header. xmax+l-temp. header. xmin;
temp. height=temp. header. ymax+l-temp. header. ymin(
/* Allocate the sprite buffer */
temp . image (unsigned char *)malloc ((temp. length) * (temp . height)) (
/* Read the image /
/*printf("length :%d height :%d", temp. length, temp. height);

Useful for debugging purposes */
readpcximage (fi. le, temp . image, (temp. length) * (temp, height)) (
/* PCX succesfully read' &/

return(temp);

void getPixs(int rands[50]) /* Gets xy coords of the chosen pixels */

FILE * pixelFile;
int x, y, length, height;

if ((pixelFile=fopen("pixeldata. txt", "r"))==NULL)
(

printf("Error' Could not open Pixel Data File%a") &

else
(

fscanf(pixelFi. le, "%d %d", &length, &height);
for(int i = 0; &. & 50; i++)

fscanf(pixelFile, "%d %d", rx, &y);
rands(i.] = (int)(((float)x/4. 0) + ((float)y/4. 0)*(float)length)

fclose(pixelFile);

void grabPixels (FILE *file, float pixelArray[] [50], float exposurehrray[QTY PIX))

(
char rmagewame[20] I
FILE * imageFile;

27

pcx struct spectz

unsigned char buf;
int pix[50];
int &, i = 0)

getPixs(pix)z // Gets XY coords of chosen pixels

fseek(fz. le, OL, SEEK SET) I
while (i & QTY PIX)

fscanf(file, "kf ts", Sexposurearray[i), imageName);
if ((imageFile=fopen(imageName, "r"))==NULL)

printf("Error! Could not open image: kskn", imagewame);
) else

epact=readpcx(imageFi. le) I
if (spect. image==NULL)
(

printf("Error loading file!");
) else
(

for(&
= 0& & & 50; &++)

buf - spect. image[pix[&]]; // Picks out elected pixels
pi. xelArray [i] [&] = (float) (int) bufz

i++I
delete epact. image;

)
)
f close (image File):

)
)

float weight(float i) // A simple Hat function for weighting

if(z. &= (ZMIN+ZMAX)/2. 0)

return i. — ZMIN;

) else

return ZMAX

void computekesponseCurve(float pixArr[][50], float expArr[])

int i. , &, k, xsize, ysz. ze, n = 256;
float wij(
xsize = QTY PIX*50+n+lz
ysize = n + 50;
Array2D& double & A(xsize, ysize)! /* create MxN array; all zeros */
ArraylD& double & b(xsize) I

0;
for(i = 0) i & 50; I++)

for(&
= 0; & & QTY PIX; &++) // Fi. lls array with chosen pixel data

& I [i]+1. 0):
[i.]+1. 0)] = wi&;

wi& = weight (pixArr [
A[k] [(int) (pixArr [&]
A[k] (n+i] = -wij;
b[k] wi& & exparr[
k++ I

)

A[k] [129] 1. 0;

28

k++;
for(i 0; i & n-2) rtt)
(

A(k] [i] - L " weight (i+1))
A(k] (i+I) = -2 * L * weight(rtl);
Afk] (I+2) = L * weight (i+I))
k++;

QR& double & x (A);

Arrayln& double & ans - x. solve(b); /* Solves system of equations '/

for(i = 0, I & n+50) i++)
printf ("ed %fin", i. , ans [i)),

)

int main(int argc, char ** argv)

FILE * files
float pi. xelArray[QTY PIX][50),
float exposureArray(QTY PIX];

/* Checks for i. nvalid i. nvocation */ if (argc!=2)

printf("Usage: goblin namefile. txt. ln"))
return(1);

)
if ((file=fopen(argv[l), "r"))==NULL)

printf (" Cannot open file ' ln");
return(1);

/* Checks to see if file i. s readable */

)
grabPi. xels(file, pixelArray, exposureArray); //Loads data in memory
fclose(fi. le); /* Closes file once image is loaded into memeory */
computeResponseCurve(pixelArray, exposureArray)[

//C&mputes the spectral response curve.
return(0);

)

The above program must be run with the following syntax:

) goblin namefile. txt

namefile. txt is a text file containing a list of the names of the images and their

corresponding exposure times. e. g. :

¹ name of file Exposure time (in seonds)

one. pcx 1. 5
two. pcx 0. 5

It also must be run in the same director as pixelfile. txt, which lists the X and Y

coordinates of the pixels to be examined in each image. e. g. :

¹ x coordinate y coordinate

356 1254

29

642 572

2. Gandalf. c++

¹include &stdio. h&
¹snclude &stdlib. h&

¹include &string. h&
¹include "tnt. h"
¹include "gama qr. h"

using namespace TNT;
usi. ng namespace JAMAI

const
const
const
const
const
const

i. nt QTY EXP = S;
int QTY PIX = 31
i. nt SPECT WIDTH = 8801
float L = 100, 01
float ZMIN = 0. 0/
float ZMAX 255. 0;

/* ¹ of different exposure times to be processed */
/* ¹of dsff intensity settangs (¹ of "pixels") */
/* Width in pixels of the spectrum */
/* Smoothness factor */
/* Minimum Pixel Value */
/* Maximum Pixel Value */

/* Reads in the image information from the data file created by hobbit. c */

void readImage(FILE *file, float pixels(SPECT WIDTH])
(

int t1
float trash;
fseek(file, DL, SEEK SET);
for(int i = 0, i & SPECT WIDTH; rt+)

fscanf(file, "¹d %f ¹f", at, spixels[i.), strash)
)

/* grabPs. xels fi. lls each wavelength array with the intensity information stored in the
data files */

voi. d grabPixels(FILE *f1. le, float pixelArray[][QTY EXP][QTY PIX], float
exposureArray[QTY EXP])

char imageName(20);
FILE * imageFile/
float image[SPECT HIDTH]I

int 3, k, i = 0;
0;

fseek(file, OL, SEEK SET))
while (k & QTY PIX)
(

wh~le (s. & QTY EXP)

fscanf(file, 5¹s", smageName)1 /* Reads next file name from datafile +/
if ((imageFi. le=fopen(imageName, "r"))= NULL)

prrntf("Error~ Could not open image: Zskn", imageName);
else

readlmage(imageFile, image); /* Reads in data file to memory '/
for(j = 0; 3 & SPECT WIDTH; I++
(

pixelArray[j](i](k] = image(3); /& Fills pixelArray with image */

30

)
fclose(imageFile);

)
k++9

)
for(i = 0; i & QTY EXPZ i++) /* Reads exposure times into memory */

fscanf(file, "tf", sexposureArray[i));
09

float weight(float i) /* A simple hat function */
(

if(i &= (ZMIN+ZMAY)/2. 0)

return i — ZMIN;

) else

return ZMAX

)

/* the computeResponseCurve function computes, using the Debevec algorithm, the response
curve for each particular wavelength and stores i. t in a data file for use at a later
time. */

void computeResponseCurve (float pixArr[] [QTY EXP) (QTY PIX], float expArr (QTY EXP], int
lambda)
(

int I,], k, xsize, ysize, n 256;
FILE * out)
float wz. l;
xsize = QTY EXP*QTY PIX+n+lz
ysize = n + 50;
Array2D& double & A(xsize, ysi. ze)z
ArraylD& double & b(seize);
k = 0;
for(i = 0; i & QTY PIX; i++)

for(I = 09 I & QTY EXP;]t+)
(

/* create Mxw array; all zeros */

/* Fills arrays with informatz. on */
/* contained in the arrays */

wil = wei. ght(pixArr(lambda]
A[k)[(int) (pixArr[lambda] []
A(k)[n+if = -wz];
bfk) = wij * expArr[]]:
k++;

)

[I] Ii]+I 0);
][i)+1. 0)] = wi];

A(k](129) = 1. 0;
k++;
for(i = 0; i & n-2/ i++)

A I k] li) = L * weight (itl);
A(k] (i+1] = -2 * L * weight(i+1))
A I k] (i+2 I = L * weight (i+1))
k++)

)

QR& double & x(A)z

ArraylD& double & ans = x. solve(b); /* Solves the system of equations */
char buf(10);
sprintf(buf, "lambdakd. out", lambda);

if ((out=fopen(buf, "w"))==NULL) // Opens file for output

printf("Error' Could not open file(s)I"))
) else

// for(i = 0; i & QTY PIX; I++)

31

fprintf(out, mkd kfhn5L i, ans[0[);
fclose(out);

int main(int argc, char ** argv)
(

FILE * file;
float pixelhrray(SPECT WIDTH] IQTY EXP[(QTY PIX[I
float exposureArray[QTY EXP];

/* Checks for i. nvalid invocation */ if (argc~=
(

pri. ntf("Usage: goblin namefrle. txt. kn");
return(1);

if ((file=fopen(argv[l), "r"))==NULL) /* Checks if fs. le is readable */

printf("Cannot open file&kn");
return(1);

grabPixels(file, pixelArray, exposureArrayl

fclose (file); / Closes file once smages are loaded into memeory */
printf("Checkpoint ()2kn")I
for(int i = 0; i & SPECT WIDTH; i++)

computenesponseCurve(pixelhrray, exposureArray, i);
return(0);

)

Gandalf must be run by the following command:

)Gandalf imagedata. txt

Below is a example of imagedata. txt

onel. out
one2. out
one3. out
twol. out
two2. out
two3. out
threel. out
three2. out
three3. out
0. 125
0. 25
0. 5

The filenames point to the data files created by Hobbit. c

and are listed in order of different spectra (i. e.

onel. out and one2. out refer to the same spectrum, but have

slightly different exposure times.) The three numbers at

the end of the file correspond to the shutter speed for

32

each exposure. (i. e. onel. out and twol. out both have a

shutter speed of 0. 125 seconds).

3. Hobbitc

Pinclude &stdio. h&
Pinclude &stdlib. h&

I)include &string. h&

/*
Hobbi. t i. s the first level pass that the raw . PCX image goes through. Hobbit averages

the brightness value of each column of pixels in the input file. As the diffraction
gratz. ng z. s oriented vertically, each column of pixels corresponds to a range of
wavelengths. It also calculates the standard deviation of the brightness values in each
column.

Input: a . PC/ formatted image, an output file name (e. g. 'output. txt')

Output: the x by y dimensions of the image, an output fi. le ('output. txt') x rows of
data, formatted as follows:

xvalue average intensity std dev Nn

where:

xvalue — horizontal position in the image
average intensity — averaged intensity value through the entire column at horizontal

value xvalue
std dev — standard deviation of all intensity values at horizontal value xvalue

*/

typedef struct

char signatures
char version)
char encoding;
char bytes~er~ixelz
unsigned short int xmznz
unsigned short int ymin;
unsigned short int xmax;
unsigned short int ymax;
unsigned short int vres;
unsigned short int hres;
char palette[48) I
char reserved;
char color layers;
unsigned short i. nt bytes~sr line;
unsigned short int palette type;
char unused[58);

)PCX Header;

unsigned char bytes~er~zxeII

void readpcxrmage (FILE * file, void * target, int size)
(

unsigned char buf)
unsigned int counter;
int I=O)
while(&&=size) / Image not entirely read& */

33

(
/* Get one byte */
fread(rbuf, I, 1, file);
/* Check the 2 most significant bits */
if ((buf&192)==192)

/* We have llxxxxxx */
counter=(bufa63); /* Number of times to repeat next byte s/
freed(abuf, l, l, file); /* Get next byte */
for(;counter&0/counter —) /* and copy it counter times */

(
((char*)target) [i)=buf;
//printf ("adman", buf);
i++; /* increase the number of bytes written */

else

/* Just copy the byte */
((char*) target) (i) =buf,
//print f ("kdkn", bu f);
i++; /* Increase the number of bytes wri. tten */

void *readpcx(FILE *fi. le, unsigned short int *length, unsigned short int *hei. ghtl
/* Returns NULL if failed, otherwise a pointer to the loaded image */

(
PCX Header header;
void *target;
fseek(file, 0, SEEK SET))
fread(/header, si. zeof(PCX Header), 1, file); /* Reads the PCX header */
if((header. signature'=OxOa)ll(header. version'=5)) /* Checks if file is in PCX format

*/
return(NULL)/

else
(/* it i. s' */

/* Return height and length */
*length=header. xmax+l-header. xmi. n;
height=header. ymax+l-header. ymin,

/* Allocate the sprite buffer */
target=(void *)malloc((*length)*(*height));
/* Read the image */
readpcximage(file, target, (*length)*(*height))1
/* PCX succes fully read' */
return(target);

void createbataFiles(char * target, unsigned int length, unsigned int hei. ght, char *
OUtpUt)

FILE * stats)
int x, y;
float sig, sig sqrdI

unsi. gned char buf;
if ((stats=fopen(output, "w"))==NULL) // Opens data file for output

printf("Error' Could not open file(s)l");
else

(
for(x = 0) x & length; x++)
(

sig = 0. 01
sig sqrd = 0. 0)
for(y=O; y & height; y++)

34

// Calculates the variance
// Calculates the variance"2

)
fclose(stats);

buf=target((yslength)+x);
sig+= (float)(int)buf;
sig sqrd + (float) (((int) buf) * ((tnt) buf));

sig/=(float) height;
sig sqrd/=(float)height;
fprintf(stats, ygd kf 5fRn", x+I, ss. g, (sig sqrd — sig*sig));

int mai. n(int argc, char ** argv)
(

FILE * file;
void * image; /* 8 bit image as read from the pcx */
unsigned short int length, height)

/* Checks for invalid invocation */ if (argc'=3)

printfl"Usage: hobbi. t fi. lename. pcx outputnameln")(
return(1);

) if ((file=fopen(argv[1), "r"))==NULL) /* Checks to see if file is readable */

printf("Cannot open file~le");
return(ll;

)
if ((image=readpcx(file, elength, sheight))==NULL) /* Checks if file can be loaded */

pri. ntf("Error loadi. ng file'");
return(1);

)
fclose(fsle); /* Closes file once image is loaded into memeory */
printf("Image Dimensions: ()d by kd. kn", length, height);

createDataFiles(image, length, height, argv(2));
free(image)(
return(0);

)

This program acts as the first level processor for any image to be run through

Gandalf. c++. It computes an average brightness value for each wavelength (column of

pixels) and outputs it in a text file to be used as input by Gandalf. c++.

35

VITA

Casey Patrick Deen
1637 Merrimac Trail
Garland, TX 75043

casey deen@excite. corn

Casey Deen grew up in Garland, Texas, a suburb of Dallas, where he attended

Garland High School. Thanks to a wonderful physics professor, Mr. Richard Lines,

Casey became intrigued with physics and decided to pursue it as a major in college. He

currently attends Texas A&M University and will graduate in December 2004 with a

Bachelors of Science in Physics. Afterwards, he plans to go to graduate school to

pursue a master's degree in Astronomy or Astrophysics.

Poster Presentations:

~ Pathways to the Doctorate Research Symposium, Texas A&M University

System, TAMU at Galveston, November 16, 2003.

~ Student Research Week Symposium, Texas A&M University, TAMU College

Station, April 2004.

