9 research outputs found

    Dragmacidin G, A Bioactive Bis-Indole Alkaloid From A Deep-Water Sponge Of The Genus Spongosorites

    No full text
    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines

    A Molecular Systematic Survey of Cultured Microbial Associates of Deep-Water Marine Invertebrates

    No full text
    A taxonomic survey was conducted to determine the microbial diversity held within the Harbor Branch Oceanographic Marine Microbial Culture Collection (HBMMCC). The collection consists of approximately 17,000 microbial isolates, with 11,000 from a depth of greater than 150 ft seawater. A total of 2273 heterotrophic bacterial isolates were inventoried using the DNA fingerprinting technique amplified rDNA restriction analysis on approximately 750–800 base pairs (bp) encompassing hypervariable regions in the 5′ portion of the small subunit (SSU) 16S rRNA gene. Restriction fragment length polymorphism patterns obtained from restriction digests with RsaI, HaeIII, and HhaI were used to infer taxonomic similarity. SSU 16S rDNA fragments were sequenced from a total of 356 isolates for more definitive taxonomic analysis. Sequence results show that this subset of the HBMMCC contains 224 different phylotypes from six major bacterial clades (Proteobacteria (Alpha, Beta, Gamma), Cytophaga, Flavobacteria, and Bacteroides (CFB), Gram+ high GC content, Gram+ low GC content). The 2273 microorganisms surveyed encompass 834 α-Proteobacteria (representing 60 different phylotypes), 25 β-Proteobacteria (3 phylotypes), 767 γ-Proteobacteria (77 phylotypes), 122 CFB (17 phylotypes), 327 Gram+ high GC content (43 phylotypes), and 198 Gram+ low GC content isolates (24 phylotypes). Notably, 11 phylotypes were ⩽93% similar to the closest sequence match in the GenBank database even after sequencing a larger portion of the 16S rRNA gene (∼1400 bp), indicating the likely discovery of novel microbial taxa. Furthermore, previously reported “uncultured” microbes, such as sponge-specific isolates, are part of the HBMMCC. The results of this research will be available online as a searchable taxonomic database (www.hboi.edu/dbmr/dbmr_hbmmd.html)

    HBMMD: An Enhanced Database of the Microorganisms Associated with Deeper Water Marine Invertebrates

    No full text
    The Harbor Branch Marine Microbial Database (HBMMD) provides preliminary taxonomic identifications and features of microorganisms maintained in the Harbor Branch Oceanographic Institution Marine Microbial Culture Collection. The microbes are primarily derived from marine invertebrates such as sponges (phylum Porifera) and soft corals (phylum Cnidaria) found in deep water environments [\u3e120 feet (\u3e35 m) seawater]. The microbes isolated from within marine invertebrates represent some unique taxa and phylogenetic signatures. The database provides a user-friendly method to systemically search or sort a desired input. The site allows a powerful search for multiple parameters of any entry. Images of the microbes are contained within the database and can be accessed from the website. The HBMMD homepage is located at http://www.hboi.edu/dbmr/dbmr_hbmmd.html

    Nocardiopsistins A-C: New angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378

    No full text
    Marine natural products have become an increasingly important source of new drug leads during recent years. In an attempt to identify novel anti-microbial natural products by bioprospecting deep-sea Actinobacteria, three new angucyclines, nocardiopsistins A-C, were isolated from Nocardiopsis sp. strain HB-J378. Notably, the supplementation of the rare earth salt Lanthanum chloride (LaCl3) during fermentation of HB-J378 significantly increased the yield of these angucyclines. The structures of nocardiopsistins A-C were identified by 1D and 2D NMR and HR-MS data. Nocardiopsistins A-C have activity against MRSA (methicillin-resistant Staphylococcus aureus) with MICs of 3.12–12.5 μg/mL; the potency of nocardiopsistin B is similar to that of the positive control, chloramphenicol. Bioinformatic analysis of the draft genome of HB-J378 identified a set of three core genes in a biosynthetic gene cluster that encode a typical aromatic or type II polyketide synthase (PKS) system, including ketoacyl:ACP synthase α-subunit (KSα), β-subunit (KSβ) and acyl carrier protein (ACP). The production of nocardiopsistins A-C was abolished when the three genes were knocked out, indicating their indispensable role in the production of nocardiopsistins. Keywords: Nocardiopsis, Nocardiopsistins, Angucycline, Anti-MRSA, Actinobacteria, LaCl

    Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites

    No full text
    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines
    corecore