11 research outputs found

    28S rRNA is inducibly pseudouridylated by the mTOR pathway translational control in CHO cell cultures

    Get PDF
    10.1016/j.jbiotec.2014.01.024Journal of Biotechnology174116-21JBIT

    In situ analysis of 8-Oxo-7,8-dihydro-2′-deoxyguanosine oxidation reveals sequence- and agent-specific damage spectra

    No full text
    Guanine is a major target for oxidation in DNA, with 8-oxo-7,8-dihydro- 2′-deoxyguanosine (8-oxodG) as a major product. 8-oxodG is itself significantly more susceptible to oxidation than guanine, with the resulting damage consisting of more than 10 different products. This complexity has hampered efforts to understand the determinants of biologically relevant DNA oxidation chemistry. To address this problem, we have developed a high mass accuracy mass spectrometric method to quantify oxidation products arising site specifically in DNA. We applied this method to quantify the role of sequence context in defining the spectrum of damage products arising from oxidation of 8-oxodG by two oxidants: nitrosoperoxycarbonate (ONOOCO2 -), a macrophage-derived chemical mediator of inflammation, and the classical one-electron oxidant, riboflavin-mediated photooxidation. The results reveal the predominance of dehydroguanidinohydantoin (DGh) in 8-oxodG oxidation by both oxidants. While the relative quantities of 8-oxodG oxidation products arising from ONOOCO2 - did not vary as a function of sequence context, products of riboflavin-mediated photooxidation of 8-oxodG were highly sequence dependent. Several of the 8-oxodG oxidation products underwent hydrolytic conversion to new products with half-lives of 2-7 h. The results have implications for understanding the chemistry of DNA oxidation and the biological response to the damage, with DNA damage recognition and repair systems faced with a complex and dynamic set of damage targets. © 2012 American Chemical Society

    Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice

    No full text
    10.4049/jimmunol.1300742Journal of Immunology19163192-3199JOIM

    Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification.

    No full text
    Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in beta cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t(6)A37 in tRNA(UUU)(Lys) to ms(2)t(6)A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms(2)t(6)A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2(-/-) beta cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans

    A feel for the template: zinc finger protein transcription factors and chromatin

    No full text

    DNA and Double-Stranded Oligonucleotides

    No full text
    corecore