14 research outputs found

    Controlling magnetoresistance by oxygen impurities in Mq3-based molecular spin valves

    Get PDF
    The understanding of magnetoresistance (MR) in organic spin valves (OSVs) based on molecular semiconductors is still incomplete after its demonstration more than a decade ago. While carrier concentration may play an essential role in spin transport in these devices, direct experimental evidence of its importance is lacking. We probed the role of charge carrier concentration by studying the interplay between MR and multilevel resistive switching in OSVs. The present work demonstrates that all salient features of these devices, particularly the intimate correlation between MR and resistance, can be accounted for by the impurity band model, based on oxygen migration. Finally, we highlight the critical importance of carrier concentration in determining spin transport and MR in OSVs and the role of interface-mediated oxygen migration in controlling the OSVs response

    Conditions for the growth of smooth La0.7Sr0.3MnO3 thin films by pulsed electron ablation

    Full text link
    We report on the optimisation of the growth conditions of manganite La0.7Sr0.3MnO3 (LSMO) thin films prepared by Channel Spark Ablation (CSA). CSA belongs to pulsed electron deposition methods and its energetic and deposition parameters are quite similar to those of pulsed laser deposition. The method has been already proven to provide manganite films with good magnetic properties, but the films were generally relatively rough (a few nm coarseness). Here we show that increasing the oxygen deposition pressure with respect to previously used regimes, reduces the surface roughness down to unit cell size while maintaining a robust magnetism. We analyse in detail the effect of other deposition parameters, like accelerating voltage, discharging energy, and temperature and provide on this basis a set of optimal conditions for the growth of atomically flat films. The thicknesses for which atomically flat surface was achieved is as high as about 10-20 nm, corresponding to films with room temperature magnetism. We believe such magnetic layers represent appealing and suitable electrodes for various spintronic devices.Comment: original paper, thin film optimization, 25 pages, 9 figure

    Spin injection in the doped bad metal SrTiO3

    Get PDF
    In this paper, we demonstrate the capability to establish spin-polarized currents in doped SrTiO3 (STO). The results are based on the study of charge and spin transport in STO layers doped by the reversible electromigration of oxygen atoms in resistive-switching La0.7Sr0.3MnO3/STO/Co vertical stacks. The formation of oxygen vacancies inside STO results in a metallic conductivity at temperatures <200–250 K, above which a transitionto an insulating like behavior is detected. A detailed theoretical analysis shows that the behavior of the metallic phase in our samples corresponds to the well-known state of the thermodynamically doped STO featuring the so-called bad metal behavior. Thus, our findings introduce this class of unconventional materials as valuable candidates for innovative spintronic devices

    Application of magnetic rods for fixation in orthopedic treatments

    No full text
    Achieving an efficient fixation for complicated fractures and scaffold application treatments is a challenging surgery problem. Although many fixation approaches have been advanced and actively pursued, the optimal solution for long bone defects has not yet been defined. This paper promotes an innovative fixation method based on application of magnetic forces. The efficiency of this approach was investigated on the basis of finite element modeling for scaffold application and analytical calculations for diaphyseal fractures. Three different configurations have been analyzed including combinations of small cylindrical permanent magnets or stainless steel rods, inserted rigidly in the bone intramedullary canals and in the scaffold. It was shown that attractive forces as high as 75 N can be achieved. While these forces do not reach the strength of mechanical forces in traditional fixators, the employment of magnetic rods is expected to be beneficial by reducing considerably the interface micromotions. It can additionally support magneto-mechanical stimulations as well as enabling a magnetically assisted targeted delivery of drugs and other bio-agents

    Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles

    No full text
    Abstract The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm. The device is based on a specifically tailored configuration of movable permanent magnets. The experiments performed in 500 µm capillary have shown the ability to concentrate the SP-MNPs into regions characterized by different shapes and sizes ranging from 100 to 200 µm. The results are explained by straightforward calculations and comparison between magnetic and thermal energies. We provide then a comprehensive description of the magnetic field intensity and its spatial distribution for the confinement and motion of magnetic nanoparticles for a wide range of sizes. We believe this description could be used to establish accurate and quantitative magnetic protocols not only for biomedical applications, but also for environment, food, security, and other areas

    Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    No full text
    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (∼0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm−3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed

    Spontaneous formation of magnetic-plasmonic liposomes with tunable optical and magnetic properties

    No full text
    Magnetoplasmonic NPs have shown remarkable potential in hyperthermia, Magnetic Resonance Imaging (MRI), and Surface Enhanced Raman Scattering (SERS) imaging and diagnostics. However, despite their potential, effective clinical translation remains extremely limited due to a lack of fundamental knowledge about the biological response to these materials, and ongoing efforts seek to bridge the gap between nanomaterial production and effective application. To overcome these hurdles, the combination of inorganic NPs with lipid membranes has emerged as a promising strategy for the biocompatibilization of nanomaterials, preserving the inherent properties of each component and exhibiting novel synergistic functionalities. In this study, we synthesize magnetic-plasmonic-liposome adducts via spontaneous self-assembly. The interaction between magnetic-plasmonic NPs and liposomes was addressed from a physicochemical point of view as a function of liposome composition and concentration. By combining Cryogenic Microscopy, UV-visible spectroscopy and Dynamic Light Scattering we demonstrated that the rigidity of the lipid membrane affects the aggregation of the NPs and the colloidal stability of the NPs-vesicle hybrids. The magnetic responsivity of the hybrids is enhanced as a consequence of the colocalization and crowding of NPs on the lipid membranes and can be finely modulated by varying the number of particles per vesicle. Overall, these results pave the way for the development of multifunctional materials with controlled magnetic-plasmonic properties for a variety of technological applications

    Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering

    No full text
    Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations
    corecore