94 research outputs found

    Optical, magneto-optical properties and fiber-drawing ability of tellurite glasses in the TeO2-ZnO-BaO ternary system

    Full text link
    The presented work is focused on the optical and magneto-optical characterization of TeO2-ZnO-BaO (TZB) tellurite glasses. We investigated the refractive index and extinction coefficient dispersion by spectroscopic ellipsometry from ultraviolet, 0.193 um, up to mid infrared, 25 um spectral region. Studied glasses exhibited large values of linear (n632 = 1.91-2.09) and non-linear refractive index (n2 = 1.20-2.67x10-11 esu), Verdet constant (V632 = 22-33 radT-1m-1) and optical band gap energy (Eg = 3.7-4.1 eV). The materials characterization revealed that BaO substitution by ZnO leads (at constant content of TeO2) to an increase in linear and nonlinear refractive index as well as Verdet constant while the optical band gap energy decreases. Fiber drawing ability of TeO2-ZnO-BaO glassy system has been demonstrated on 60TeO2-20ZnO-20BaO glass with presented mid infrared attenuation coefficient. Specific parameters such as dispersion and single oscillator energy, Abbe number, and first-/ third-order optical susceptibility are enclosed together with the values of magneto-optic anomaly derived from the calculation of measured dispersion of the refractive index

    Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety

    Get PDF
    The interplay between corticotropin-releasing hormone (CRH) and the dopaminergic system has predominantly been studied in addiction and reward, while CRH-dopamine interactions in anxiety are scarcely understood. We describe a new population of CRH-expressing, GABAergic, long-range-projecting neurons in the extended amygdala that innervate the ventral tegmental area and alter anxiety following chronic CRH depletion. These neurons are part of a distinct CRH circuit that acts anxiolytically by positively modulating dopamine release.Fil: Dedic, Nina. Max Planck Institute Of Psychiatry; AlemaniaFil: Kühne, Claudia. Max Planck Institute Of Psychiatry; AlemaniaFil: Jakovcevski, Mira. Max Planck Institute Of Psychiatry; AlemaniaFil: Hartmann, Jakob. Max Planck Institute Of Psychiatry; AlemaniaFil: Genewsky, Andreas J.. Max Planck Institut Of Psychiatry; AlemaniaFil: Gomes, Karina S.. Max Planck Institute Of Psychiatry; AlemaniaFil: Anderzhanova, Elmira. Max Planck Institute Of Psychiatry; AlemaniaFil: Pöhlmann, Max L.. Max Planck Institute Of Psychiatry; AlemaniaFil: Chang, Simon. Max Planck Institute Of Psychiatry; AlemaniaFil: Kolarz, Adam. Max Planck Institute Of Psychiatry; AlemaniaFil: Vogl, Annette M.. Max Planck Institute Of Psychiatry; AlemaniaFil: Dine, Julien. Max Planck Institute Of Psychiatry; AlemaniaFil: Metzger, Michael W.. Max Planck Institute of Psychiatry; ArmeniaFil: Schmid, Bianca. Max Planck Institute Of Psychiatry; AlemaniaFil: Almada, Rafael C.. Max Planck Institute Of Psychiatry; AlemaniaFil: Ressler, Kerry J.. Harvard Medical School; Estados UnidosFil: Wotjak, Carsten T.. Max Planck Institute Of Psychiatry; AlemaniaFil: Grinevich, Valery. University of Heidelberg; AlemaniaFil: Chen, Alon. Max Planck Institute Of Psychiatry; AlemaniaFil: Schmidt, Mathias V.. Institute Of Developmental Genetics, Helmholtz Zentrum; AlemaniaFil: Wurst, Wolfgang. German Center for Neurodegenerative Diseases; AlemaniaFil: Refojo, Damian. Max Planck Institute Of Psychiatry; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Deussing, Jan M.. Max Planck Institute Of Psychiatry; Alemani

    SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration

    Get PDF
    High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation
    corecore