103 research outputs found

    Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence

    Get PDF
    It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase parallel to alpha (CaMKII alpha)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i. c. v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications

    Experimental Study on Demountable Shear Connectors in Composite Slabs with Profiled Decking

    Get PDF
    yesThis paper presents an experimental study on shear strength, stiffness and ductility of demountable shear connectors in metal decking composite slabs through push-off tests. Twelve full-scale push-off tests were carried out using different concrete strength, number of connectors and different connector diameter. The experimental results showed that the demountable shear connectors in metal decking composite slabs have similar shear capacity and behaviour as welded shear studs and fulfilled the minimum ductility requirement of 6mm required by Eurocode 4. The shear capacity was compared against the prediction methods used for the welded shear connections given in Eurocode 4, AISC 360-10, ACI 318-08 and method used for bolted connection in Eurocode 3. It was found that the AISC 360-10 method overestimated the shear capacity while the ACI 318-08 method underestimated the shear capacity of specimens with single shear connector per trough. The Eurocodes method was found to provide a safe prediction for specimens with single and pair demountable connectors per trough. In addition, prediction methods given in both AISC 360-10 and ACI 318-08 for welded shear studs overestimated the shear capacity of specimens with 22 mm diameter demountable connectors that failed in concrete crushing.PhD work from EPSRC studentshi

    Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5

    Get PDF
    Responding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding protein 51 (FKBP5) plays a critical role in fine-tuning MR:GR balance in the hippocampus. Biotinylated-oligonucleotide immunoprecipitation in primary hippocampal neurons reveals that MR binding, rather than GR binding, to the Fkbp5 gene regulates FKBP5 expression during baseline activity of glucocorticoids. Notably, FKBP5 andMR exhibit similar hippocampal expression patterns in mice and humans, which are distinct from that of the GR. Pharmacological inhibition and region- and cell type-specific receptor deletion in mice further demonstrate that lack of MR decreases hippocampal Fkbp5 levels and dampens the stress-induced increase in glucocorticoid levels. Overall, our findings demonstrate that MR-dependent changes in baseline Fkbp5 expression modify GR sensitivity to glucocorticoids, providing insight into mechanisms of stress homeostasis.Diabetes mellitus: pathophysiological changes and therap

    Genetic modifiers in rare disorders: the case of fragile X syndrome.

    Get PDF
    Methods employed in genome-wide association studies are not feasible ways to explore genotype-phenotype associations in rare disorders due to limited statistical power. An alternative approach is to examine relationships among specific single nucleotide polymorphisms (SNPs), selected a priori, and behavioural characteristics. Here, we adopt this strategy to examine relationships between three SNPs (5-HTTLPR, MAOA, COMT) and specific clinically-relevant behaviours that are phenotypic of fragile X syndrome (FXS) but vary in severity and frequency across individuals. Sixty-four males with FXS participated in the current study. Data from standardised informant measures of challenging behaviour (defined as physical aggression, property destruction, stereotyped behaviour, and self-injury), autism symptomatology, attention-deficit-hyperactivity-disorder characteristics, repetitive behaviour and mood/interest and pleasure were compared between each SNP genotype. No association was observed between behavioural characteristics and either 5-HTTLPR (serotonin) or MAOA (monoamine oxidase) genotypes. However, compared to the COMT (dopamine) AG and GG genotypes, the AA genotype was associated with greater interest and pleasure in the environment, and with reduced risk for property destruction, stereotyped behaviour and compulsive behaviour. The results suggest that common genetic variation in the COMT genotype affecting dopamine levels in the brain may contribute to the variability of challenging and repetitive behaviours and interest and pleasure in this population. This study identifies a role for additional genetic risk in understanding the neural and genetic mechanisms contributing to phenotypic variability in neurodevelopmental disorders, and highlights the merit of investigating SNPs that are selected a priori on a theoretical basis in rare populations

    Genetic dissection of CRH-controlled neurocircuitries of stress.

    No full text
    Dysregulated corticotropin-releasing hormone (CRH)-circuits have been implicated in the pathophysiology of stress-related psychiatric disorders. This study provides novel insights into the underlying CRH-neurotransmitter interactions. Different genetic tools helped to unravel the identity and connectivity of CRH-expressing neurons in the mouse brain. Moreover, this work highlights the ability of the CRH-system to regulate behavioral responses in a bidirectional manner, thereby modulating adaptive and maladaptive stress-circuits

    On Different Models for Generating Random SAT Problems

    No full text
    In the last decade a lot of effort has been invested into both theoretical and experimental analysis of sat phase transition. However, a deep theoretical understanding of this phenomenon is still lacking. Besides, many of experimental results are based on some assumptions that are not supported theoretically. In this paper we introduce the notion of sat--equivalence and we prove that some restrictions often used in sat experiments don't make an impact on location of a crossover point. We consider several fixed and random clause length sat models and relation between them. We also discuss one new sat model and report on a detected phase transition for it

    The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response

    No full text
    Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and consequently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacological studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, including anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiology and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mechanisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely understood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses

    Therapeutic potential of taar1 agonists in schizophrenia: Evidence from preclinical models and clinical studies

    No full text
    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neu-rotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepres-sant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders
    corecore