31 research outputs found

    Fluoxetine and thioridazine inhibitefflux and attenuate crystalline biofilm formation by Proteusmirabilis

    Get PDF
    Proteus mirabilis forms extensive crystalline biofilms on indwelling urethral catheters that block urineflow and lead to serious clinical complications. The Bcr/CflA efflux system has previously been identified as important for development of P. mirabilis crystalline biofilms, highlighting the potential for efflux pump inhibitors (EPIs) to control catheter blockage. Here we evaluate the potential for drugs already used in human medicine (fluoxetine and thioridazine) to act as EPIs in P. mirabilis, and control crystalline biofilm formation. Both fluoxetine and thioridazine inhibited efflux in P. mirabilis, and molecular modelling predicted both drugs interact strongly with the biofilm-associated Bcr/CflA efflux system.Both EPIs were also found to significantly reduce the rate of P. mirabilis crystalline biofilm formation on catheters, and increase the time taken for catheters to block. Swimming and swarming motilies inP. mirabilis were also significantly reduced by both EPIs. The impact of these drugs on catheter biofilm formation by other uropathogens (Escherichia coli, Pseudomonas aeruginosa) was also explored, and thioridazine was shown to also inhibit biofilm formation in these species. Therefore, repurposing of existing drugs with EPI activity could be a promising approach to control catheter blockage, or biofilmformation on other medical devices

    Development of a high-throughput ex-vivo burn wound model using porcine skin, and its application to evaluate new approaches to control wound infection

    Get PDF
    Biofilm formation in wounds is considered a major barrier to successful treatment, and has been associated with the transition of wounds to a chronic non-healing state. Here, we present a novel laboratory model of wound biofilm formation using ex-vivo porcine skin and a custom burn wound array device. The model supports high-throughput studies of biofilm formation and is compatible with a range of established methods for monitoring bacterial growth, biofilm formation, and gene expression. We demonstrate the use of this model by evaluating the potential for bacteriophage to control biofilm formation by Staphylococcus aureus, and for population density dependant expression of S. aureus virulence factors (regulated by the Accessory Gene Regulator, agr) to signal clinically relevant wound infection. Enumeration of colony forming units and metabolic activity using the XTT assay, confirmed growth of bacteria in wounds and showed a significant reduction in viable cells after phage treatment. Confocal laser scanning microscopy confirmed the growth of biofilms in wounds, and showed phage treatment could significantly reduce the formation of these communities. Evaluation of agr activity by qRT-PCR showed an increase in activity during growth in wound models for most strains. Activation of a prototype infection-responsive dressing designed to provide a visual signal of wound infection, was related to increased agr activity. In all assays, excellent reproducibility was observed between replicates using this mode

    Genomic and ecogenomic characterisation of Proteus mirabilis bacteriophage

    Get PDF
    Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii

    Comparative (Meta)genomic Analysis and Ecological Profiling of Human Gut-Specific Bacteriophage φB124-14

    Get PDF
    Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (meta)genomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14). In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored ecological landscape within the human gut microbiome

    An unusual ring—A opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila

    No full text
    A series of steroids (progesterone, testosterone acetate, 17β-acetoxy-5α-androstan-3-one, testosterone and androst-4-en-3,17-dione) have been incubated with the thermophilic ascomycete Myceliophthora thermophila CBS 117.65. A wide range of biocatalytic activity was observed with modification at all four rings of the steroid nucleus and the C-17β side-chain. This is the first thermophilic fungus to demonstrate the side-chain cleavage of progesterone. A unique fungal transformation was observed following incubation of the saturated steroid 17β-acetoxy-5α-androstan-3-one resulting in 4-hydroxy-3,4-seco-pregn-20-one-3-oic acid which was the product generated following the opening of an A-homo steroid, presumably by lactonohydrolase activity. Hydroxylation predominated at axial protons of the steroids containing 3-one-4-ene ring-functionality. This organism also demonstrated reversible acetylation and oxidation of the 17β-alcohol of testosterone. All steroidal metabolites were isolated by column chromatography and were identified by 1H, 13C NMR, DEPT analysis and other spectroscopic data. The range of steroidal modification achieved with this fungus indicates that these organisms may be a rich source of novel steroid biocatalysis which deserve greater investigation in the future

    Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312

    No full text
    This paper demonstrates for the first time transformation of a series of steroids (progesterone, androst-4-en-3,17-dione, testosterone, pregnenolone and dehydroepiandrosterone) by the thermophilic fungus Rhizomucor tauricus. All transformations were found to be oxidative (monohydroxylation and dihydroxylation) with allylic hydroxylation the predominant route of attack functionalizing the steroidal skeleta. Timed experiments demonstrated that dihydroxylation of progesterone, androst-4-en-3,17-dione and pregnenolone all initiated with hydroxylation on ring-B followed by attack on ring-C. Similar patterns of steroidal transformation to those observed with R. tauricus have been observed with some species of thermophilic Bacilli and mesophilic fungi. All metabolites were isolated by column chromatography and were identified by 1H, 13C NMR, DEPT analysis and other spectroscopic data. The application of thermophilic fungi to steroid transformation may represent a potentially rich source for the generation of new steroidal compounds as well as for uncovering inter and intraspecies similarities and differences in steroid metabolism

    Transformation of a series of saturated isomeric steroidal diols by Aspergillus tamarii KITA reveals a precise stereochemical requirement for entrance into the lactonization pathway

    No full text
    Four isomers of 5α-androstan-3,17-diol have been transformed by the filamentous fungus Aspergillus tamarii, an organism which has the ability to convert progesterone to testololactone in high yield through an endogenous four step enzymatic pathway. The only diol handled within the lactonization pathway was 5α-androstan-3α,17β-diol which, uniquely underwent oxidation of the 17β-alcohol to the 17-ketone prior to its Baeyer–Villiger oxidation and the subsequent production of 3α-hydroxy-17a-oxa-D-homo-5α-androstan-17-one. This demonstrated highly specific stereochemical requirements of the 17β-hydroxysteroid dehydrogenase for oxidation of this specific steroidal diol to occur. In contrast, the other three diols were transformed within the hydroxylation pathway resulting in functionalization at C-11β. Only 5α-androstan-3β,17α-diol could bind to the hydroxylase in multiple binding modes undergoing monohydroxylation in 6β and 7β positions. Evidence from this study has indicated that hydroxylation of saturated steroidal lactones may occur following binding of ring-D in its open form in which an α-alcohol is generated with close spatial parity to the C-17α hydroxyl position. All metabolites were isolated by column chromatography and were identified by 1H, 13C NMR and DEPT analysis and further characterized using infra-red, elemental analysis and accurate mass measurement

    Metabolic fate of 3α, 5-cycloandrostanes in the endogenous lactonization pathway of Aspergillus tamarii KITA

    No full text
    A series of 3α,5-cycloandrostane analogues with a range of functionality (6α and 6β alcohols and ketone) at carbon 6 were tested in the endogenous lactonization pathway in Aspergillus tamarii KITA. This metabolic route converts progesterone to testololactone in high yield through a four step enzymatic pathway. To date, no studies have looked at the effect of steroids devoid of polar functionality at carbon 3 and their subsequent metabolic fate by fungi which contain Baeyer–Villiger monooxygenases. Incubation of all of the cycloandrostane analogues resulted in lactonization of ring-D irrespective of C-6 stereochemistry or absence of C-3 functionality. Presence of 6β-hydroxy group and the C-17 ketone was required in order for these analogues to undergo hydroxylation at C-15β position. All metabolites were isolated by column chromatography and were identified by 1H, 13C NMR, DEPT analysis and other spectroscopic data

    Transformation of some 3α-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway

    No full text
    Aspergillus tamarii contains an endogenous lactonization pathway which can transform progesterone to testololactone in high yield through a sequential four step enzymatic pathway. In this pathway testosterone is formed which primarily undergoes oxidation of the C-17β-alcohol to a C-17 ketone but, can also enter a minor hydroxylation pathway where 11β-hydroxytestosterone is produced. It was recently demonstrated that this hydroxylase could monohydroxylate 3β-hydroxy substituted saturated steroidal lactones in all four possible binding orientations (normal, reverse, inverted normal, inverted reverse) on rings B and C of the steroid nucleus. It was therefore of interest to determine the fate of a series of 3α-substituted steroidal analogues to determine stereochemical effect on transformation. Hydroxylation on the central rings was found to be restricted to the 11β-position (normal binding), indicating that the 3α-stereochemistry removes freedom of binding orientation within the hydroxylase. The only other hydroxylation observed was at the 1β-position. Interestingly the presence of this functional group did not prevent lactonization of the C-17 ketone. In contrast the presence of the 11β-hydroxyl completely inhibited Baeyer–Villiger oxidation, a result which again demonstrates that single functional groups can exert significant control over metabolic handling of steroids in this organism. This may also explain why lactonization of 11β-hydroxytestosterone does not occur. Lactonization of the C-17 ketone was not significantly affected by the 3α-alcohol with significant yields achieved (53%). Interestingly a time course experiment demonstrated that the presence of the 3α-acetate inhibited the Baeyer–Villiger monooxygenase with its activity being observed 24 h later than non-acetate containing analogues. Apart from oxidative transformations observed a minor reductive pathway was revealed with the C-17 ketone being reduced to a C-17β-alcohol for the first time in this organism
    corecore