246 research outputs found

    The 48-inch lidar aerosol measurements taken at the Langley Research Center

    Get PDF
    This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987

    Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum)

    Get PDF
    1. Patterns of torpor, arousal, and activity in free-living greater horseshoe bats, Rhinolophus ferrumequinum, were investigated during the hibernation period by using temperature-sensitive radio-transmitters. 2. Torpor bouts varied between 0.1 - 11.8 days, with individual means ranging from 1.3 - 7.4 days. Torpor bout duration decreased with increasing ambient temperature. 3. Activity duration varied from 37 minutes – 54 hours 24 minutes, with individual means ranging from 2:29 to 8:58 hours. Activity duration increased with ambient temperatures above approximately 10oC. 4. Ten of 11 bats synchronised their arousals with dusk. The circadian rhythm of one bat showed a free-running pattern over a period of about five weeks. Arousals were more highly synchronised, and closer to dusk, in individuals with lower body condition. 5. That bats forage in mild weather is supported by the strong synchronisation of arousals with dusk, especially in bats with low body condition. 6. Patterns of torpor and subsequent activity are consistent with predictions that torpor lasts until a critical metabolic or water imbalance is achieved. Because metabolism and water loss are temperature-dependent, torpor bout duration decreases with increasing temperature. The imbalance is corrected during subsequent activity, which is relatively constant in duration until a temperature threshold of 10oC, above which increasing levels of foraging lead to longer activity bouts

    Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Get PDF
    BACKGROUND: Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. METHODS: Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. RESULTS: This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. CONCLUSION: This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease

    Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells

    Get PDF
    HERG (human ether-à-go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15 mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about −45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth

    Clofazimine Inhibits Human Kv1.3 Potassium Channel by Perturbing Calcium Oscillation in T Lymphocytes

    Get PDF
    The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders

    Field and Laboratory Studies Provide Insights into the Meaning of Day-Time Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    Get PDF
    South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12∶12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker

    Sulfhydryl Modification Induces Calcium Entry through IP3-Sensitive Store-Operated Pathway in Activation-Dependent Human Neutrophils

    Get PDF
    As the first line of host defense, neutrophils are stimulated by pro-inflammatory cytokines from resting state, facilitating the execution of immunomodulatory functions in activation state. Sulfhydryl modification has a regulatory role in a wide variety of physiological functions through mediation of signaling transductions in various cell types. Recent research suggested that two kinds of sulfhydryl modification, S-nitrosylation by exogenous nitric oxide (NO) and alkylation by N-ethylmaleimide (NEM), could induce calcium entry through a non-store-operated pathway in resting rat neutrophils and DDT1MF-2 cells, while in active human neutrophils a different process has been observed by us. In the present work, data showed that NEM induced a sharp rising of cytosolic calcium concentration ([Ca2+]c) without external calcium, followed by a second [Ca2+]c increase with readdition of external calcium in phorbol 12-myristate 13-acetate (PMA)-activated human neutrophils. Meanwhile, addition of external calcium did not cause [Ca2+]c change of Ca2+-free PMA-activated neutrophils before application of NEM. These data indicated that NEM could induce believable store-operated calcium entry (SOCE) in PMA-activated neutrophils. Besides, we found that sodium nitroprusside (SNP), a donor of exogenous NO, resulted in believable SOCE in PMA-activated human neutrophils via S-nitrosylation modification. In contrast, NEM and SNP have no effect on [Ca2+]c of resting neutrophils which were performed in suspension. Furthermore, 2-Aminoethoxydiphenyl borate, a reliable blocker of SOCE and an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, evidently abolished SNP and NEM-induced calcium entry at 75 µM, while preventing calcium release in a concentration-dependent manner. Considered together, these results demonstrated that NEM and SNP induced calcium entry through an IP3-sensitive store-operated pathway of human neutrophils via sulfhydryl modification in a PMA-induced activation-dependent manner

    Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface

    Get PDF
    The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake
    corecore