306 research outputs found
Time resolution requirements for civilian radioxenon emission data for the CTBT verification regime
The capability of the noble gas component of the International Monitoring System as a verification tool for the Comprehensive Nuclear-Test-Ban Treaty is deteriorated by a background of radioxenon emitted by civilian sources. One of the possible approaches to deal with this issue, is to simulate the daily radioxenon concentrations from these civilian sources at noble gas stations by using atmospheric transport models. In order to accurately quantify the contribution from these civilian sources, knowledge on the releases is required. However, such data are often not available and furthermore it is not clear what temporal resolution such data should have. In this paper, we assess which temporal resolution is required to best model the Xe-133 contribution from civilian sources at noble gas stations in an operational context. We consider different sampling times of the noble gas stations and discriminate between nearby and distant sources. We find that for atmospheric transport and dispersion problems on a scale of 1000 km or more, emission data with subdaily temporal resolution is generally not necessary. However, when the source-receptor distance decreases, time-resolved emission data become more important. The required temporal resolution of emission data thus depends on the transport scale of the problem. In the context of the Comprehensive Nuclear-Test-Ban Treaty, where forty noble gas stations will monitor the whole globe, daily emission data are generally sufficient, but for certain meteorological conditions, better temporally resolved emission data are required
La consommation collaborative est-elle durable ? :Le cas de l'hébergement collaboratif touristique
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
An attempt to explore the production routes of Astatine radionuclides: Theoretical approach
In order to fulfil the recent thrust of Astatine radionuclides in the field
of nuclear medicine various production routes have been explored in the present
work. The possible production routes of At comprise both light and
heavy ion induced reactions at the bombarding energy range starting from
threshold to maximum 100 MeV energy. For this purpose, we have used the nuclear
reaction model codes TALYS, ALICE91 and PACE-II. Excitation functions of those
radionuclides, produced through various production routes, have been calculated
using nuclear reaction model codes and compared with the available measured
data. Contribution of various reaction mechanisms, like, direct, preequilibrium
and equilibrium reactions, to the total reaction cross section has been studied
using the codes. Result shows that equilibrium reaction mechanism dominates in
all cases over other reaction mechanisms
Nuclear instrumentation and measurement: a review based on the ANIMMA conferences
peer reviewe
TANGRA – an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons
For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n′γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere
- …
