9 research outputs found
Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19
The disease course of COVID-19 in patients with immunodeficiencies is unclear, as well as the optimal therapeutic strategy. We report a case of a 37-year old male with common variable immunodeficiency disorder and a severe SARS-CoV-2 infection. After administration of convalescent plasma, the patientâs condition improved rapidly. Despite clinical recovery, viral RNA remained detectable up to 60 days after onset of symptoms. We propose that convalescent plasma might be considered as a treatment option in patients with CVID and severe COVID-19. In addition, in patients with immunodeficiencies, a different clinical course is possible, with prolonged viral shedding
Effect of anti-interleukin drugs in patients with COVID-19 and signs of cytokine release syndrome (COV-AID): a factorial, randomised, controlled trial.
BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO(2):FiO(2)) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 ÎŒg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 ÎŒg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 ÎŒg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2âĂâ2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program
Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment
GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22)
A complement atlas identifies interleukin-6âdependent alternative pathway dysregulation as a key druggable feature of COVID-19
Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.</p
Efficacy and safety of the investigational complement C5 inhibitor zilucoplan in patients hospitalized with COVID-19 : an open-label randomized controlled trial
Background The efficacy and safety of complement inhibition in COVID-19 patients is unclear. Methods A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO(2) below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. Results 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO(2) from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. Conclusion Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO(2)) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies
Lack of association between classical HLA genes and asymptomatic SARS-CoV-2 infection
Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B*15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B*15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B*15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified
Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19 : a meta-analysis
IMPORTANCE Clinical trials assessing the efficacy of IL-6 antagonists in patients hospitalized for COVID-19 have variously reported benefit, no effect, and harm.
OBJECTIVE To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes.
DATA SOURCES Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts.
STUDY SELECTION Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria.
DATA EXTRACTION AND SYNTHESIS In this prospectivemeta-analysis, risk of biaswas assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I-2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality.
MAIN OUTCOMES AND MEASURES The primary outcome measurewas all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days.
RESULTS A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P =.003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P <.001) for tocilizumab and 1.08 (95% CI, 0.86-1.36; P =.52) for sarilumab. The summary ORs for the association with mortality compared with usual care or placebo in those receiving corticosteroids were 0.77 (95% CI, 0.68-0.87) for tocilizumab and 0.92 (95% CI, 0.61-1.38) for sarilumab. The ORs for the association with progression to invasive mechanical ventilation or death, compared with usual care or placebo, were 0.77 (95% CI, 0.70-0.85) for all IL-6 antagonists, 0.74 (95% CI, 0.66-0.82) for tocilizumab, and 1.00 (95% CI, 0.74-1.34) for sarilumab. Secondary infections by 28 days occurred in 21.9% of patients treated with IL-6 antagonists vs 17.6% of patients treated with usual care or placebo (OR accounting for trial sample sizes, 0.99; 95% CI, 0.85-1.16).
CONCLUSIONS AND RELEVANCE In this prospectivemeta-analysis of clinical trials of patients hospitalized for COVID-19, administration of IL-6 antagonists, compared with usual care or placebo, was associated with lower 28-day all-cause mortality
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old