11 research outputs found

    BAX Is Required for Neuronal Death after Trophic Factor Deprivation and during Development

    Get PDF
    AbstractMembers of the BCL2-related family of proteins either promote or repress programmed cell death. BAX, a death-promoting member, heterodimerizes with multiple death-repressing molecules, suggesting that it could prove critical to cell death. We tested whether Bax is required for neuronal death by trophic factor deprivation and during development. Neonatal sympathetic neurons and facial motor neurons from Bax-deficient mice survived nerve growth factor deprivation and disconnection from their targets by axotomy, respectively. These salvaged neurons displayed remarkable soma atrophy and reduced elaboration of neurites; yet they responded to readdition of trophic factor with soma hypertrophy and enhanced neurite outgrowth. Bax-deficient superior cervical ganglia and facial nuclei possessed increased numbers of neurons. Our observations demonstrate that trophic factor deprivation–induced death of sympathetic and motor neurons depends on Bax

    Structure-activity relationships within a series of caspase inhibitors: effect of leaving group modifications

    No full text
    Various aryloxy methyl ketones of the 1-naphthyloxyacetyl-Val-Asp backbone have been prepared. A systematic study of their structure-activity relationship (SAR) related to caspases 1, 3, 6, and 8 is reported. Highly potent irreversible broad-spectrum caspase inhibitors have been identified. Their efficacy in cellular models of cell death and inflammation are also discussed

    Oxamyl dipeptide caspase inhibitors developed for the treatment of stroke

    No full text
    Structural modifications were made to a previously described acyl dipeptide caspase inhibitor, leading to the oxamyl dipeptide series. Subsequent SAR studies directed toward the warhead, P2, and P4 regions of this novel peptidomimetic are described herein
    corecore