131 research outputs found

    Platelet-rich plasma induces post-natal maturation of immature articular cartilage and correlates with LOXL1 activation

    Get PDF
    Platelet-­rich plasma (PRP) is used to stimulate the repair of acute and chronic cartilage damage even though there is no definitive evidence of how this is achieved. Chondrocytes in injured and diseased situations frequently re­ express phenotypic biomarkers of immature cartilage so tissue maturation is a potential pathway for restoration of normal structure and function. We used an in vitro model of growth factor­induced maturation to perform a comparative study in order to determine whether PRP can also induce this specific form of remodeling that is characterised by increased cellular proliferation and tissue stiffness. Gene expression patterns specific for maturation were mimicked in PRP treated cartilage, with chondromodulin, collagen types II/X downregulated, deiodinase II and netrin­1 upregulated. PRP increased cartilage surface cell density 1.5­fold (P < 0.05), confirmed by bromodeoxyuridine incorporation and proportionate increases in proliferating cell nuclear antigen gene expression. Atomic force microscopy analysis of PRP and growth factor treated cartilage gave a 5­fold increase in stiffness correlating with a 10­fold upregulation of lysyl oxidase like­1 gene expression (P < 0.001). These data show PRP induces key aspects of post­natal maturation in immature cartilage and provides the basis to evaluate a new biological rationale for its activity when used clinically to initiate joint repair

    Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    Get PDF
    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking

    Acidogenic Potential of “Sugar-Free” Cough Drops

    Get PDF
    A patient presented with extensive marginal ditching around restorations recently placed during whole-mouth rehabilitation. The patient was not xerostomic and was otherwise normal except for the self-reported excessive use of “sugar-free” cough drops sweetened with sorbitol and Isomalt® (an equimolar mix of glucosyl-mannitol and glucosylsorbitol). This prompted an in vitro investigation to determine whether Streptococcus sobrinus 6715, a cariogenic streptococcus, could grow and produce acid in growth medium containing an aqueous extract of such “sugar-free” cough drops. The results indicate that S. sobrinus 6715 uses Isomalt® and sorbitol extensively, producing terminal culture pH as low as 4.2 when grown on medium with cough drop extract containing these sugars. This pH is sufficient to demineralize dental enamel. Patients should be cautioned against the chronic overuse of “sugar-free” cough drops and other “sugar-free” confections sweetened with a mixture of Isomalt® and sorbitol

    An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis

    Get PDF
    Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease 3. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393 transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment. A subset of latent TB patients had signatures similar to those in active TB patients. We also identified a specific 86-transcript signature that discriminated active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis, suggest that this TB signature reflects both changes in cellular composition and altered gene expression. Although an IFN signature was also observed in whole blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic

    Highly symmetric POVMs and their informational power

    Get PDF
    We discuss the dependence of the Shannon entropy of normalized finite rank-1 POVMs on the choice of the input state, looking for the states that minimize this quantity. To distinguish the class of measurements where the problem can be solved analytically, we introduce the notion of highly symmetric POVMs and classify them in dimension two (for qubits). In this case we prove that the entropy is minimal, and hence the relative entropy (informational power) is maximal, if and only if the input state is orthogonal to one of the states constituting a POVM. The method used in the proof, employing the Michel theory of critical points for group action, the Hermite interpolation and the structure of invariant polynomials for unitary-antiunitary groups, can also be applied in higher dimensions and for other entropy-like functions. The links between entropy minimization and entropic uncertainty relations, the Wehrl entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure

    Genome-Wide Analysis of GLD-1–Mediated mRNA Regulation Suggests a Role in mRNA Storage

    Get PDF
    Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are “stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1–dependent repression prevents precocious translation of OET–promoting mRNAs. Secondly, GLD-1– and CGH-1–dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET–promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised

    The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    Get PDF
    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees
    corecore