57 research outputs found
The Massive and Distant Clusters of WISE Survey V: Extended Radio Sources in Massive Galaxy Clusters at z~1
We present the results from a pilot study with the Karl G. Jansky Very Large
Array (JVLA) to determine the radio morphologies of extended radio sources and
the properties of their host-galaxies in 10 massive galaxy clusters at z~1, an
epoch in which clusters are assembling rapidly. These clusters are drawn from a
parent sample of WISE-selected galaxy clusters that were cross-correlated with
the VLA Faint Images of the Radio Sky at Twenty-Centimeters survey (FIRST) to
identify extended radio sources within 1 of the cluster centers. Out
of the ten targeted sources, six are FR II sources, one is an FR I source, and
three sources have undetermined morphologies. Eight radio sources have
associated Spitzer data, 75% presenting infrared counterparts. A majority of
these counterparts are consistent with being massive galaxies. The angular
extent of the FR sources exhibits a strong correlation with the cluster-centric
radius, which warrants further investigation with a larger sample.Comment: accepted to Ap
Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression
Background:
Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples
using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors.
Preliminary densitometry analysis of laminin-1,
α
-smooth muscle actin (SMA) and fibronectin immunostaining
demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating
that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the
present work we investigated the role of normal and tumor-associated fibroblasts.
Methods:
In vitro
models were used to throw light on the multifactorial process of tumor-stroma interaction, by
means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical
cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in
secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored.
Results:
While normal fibroblasts produced components of interstitial matrix and TGF-
β
1 that promoted cell
proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results
support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more
laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further
increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing
their laminin production; 4.) Tumor cells predominantly expressed integrin
α
6
β
4 laminin receptors and migrated
towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors
for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of
normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells.
Conclusions:
Our results indicate that in addition to degradation of the basement membrane, invasion of cervical
cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix
Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.
Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies
Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the “intrinsic reactivity” of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant (“Tier 2-like”) viruses, globally sensitive (“Tier 1”) viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4
Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one
Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort
Background: Understanding the global impact of medulloblastoma on health related quality of life (HRQL) is critical to characterizing the broad impact of this disease and realizing the benefits of modern treatments. We evaluated HRQL in an international cohort of pediatric medulloblastoma patients. Methods: Seventy-six patients were selected from 10 sites across North America, Europe, and Asia, who participated in the Medulloblastoma Advanced Genomics International Consortium (MAGIC). The Health Utilities Index (HUI) was administered to patients and/or parents at each site. Responses were used to determine overall HRQL and attributes (ie specific subdomains). The impact of various demographic and medical variables on HRQL was considered—including molecular subgroup. Results: The majority of patients reported having moderate or severe overall burden of morbidity for both the HUI2 and HUI3 (HUI2 = 60%; HUI3 = 72.1%) when proxy-assessed. Self-care in the HUI2 was rated as higher (ie better outcome) for patients from Western versus Eastern sites, P =.02. Patients with nonmetastatic status had higher values (ie better outcomes) for the HUI3 hearing, HUI3 pain, and HUI2 pain, all P <.05. Patients treated with a gross total resection also had better outcomes for the HUI3 hearin
Variation of BMP3 Contributes to Dog Breed Skull Diversity
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait
- …