130 research outputs found

    Prevalence and determinants of stunting in a conflict-ridden border region in Armenia - a cross-sectional study

    Get PDF
    Background Despite global efforts, stunting remains a public health problem in several developing countries. The prevalence of stunting among 0- to 5-year-old children in Armenia has increased from 17% in 2000 to 19% in 2010. A baseline study was conducted among preschool children in Berd, a region near the northeastern border of Armenia that has experienced intermittent military tension for over 20 years. Methods We conducted a cross-sectional study including 594 children aged 6-month- 6 years old and their caregivers in our analysis, to assess the prevalence and determinants of stunting. We calculated the anthropometric measurements and hemoglobin levels of children; analyzed children’s stool and conducted a survey with children’s caregivers. We employed the hierarchical logistic regression model to explore the predictors of stunting among 25–72 months old children and multivariable logistic regression models to investigate the predictors of stunting among 6–24 months old children. Individual and residence level variables were included in the models including anemia, minimum dietary diversity, mothers’ height, the overall duration of breastfeeding, birthweight, child’s history of diarrhea and mean socio-economic score. Results The prevalence of stunting was significantly higher among the 6–24 months old children (13.3%) compared to the children aged 25–72 months old (7.8%). We did not find any differences in the prevalence of stunting by place of residence in either age group. The 6–24 months old children who consumed at least four food groups during the previous day (minimum dietary diversity) had 72% lower odds of being stunted (p < 0.05). Each kilogram increase in birthweight was associated with 76% lower odds of being stunted (OR = 0.24, p < 0.01). Mother’s height significantly decreased the odds of stunting among the children 25–72- months old (OR = 0.86, p < 0.001). BMI was also a significant predictor of stunting among both age-groups. Conclusions The study results highlight the significance of mother’s height, birthweight, and adequate complementary feeding to reduce stunting. Further studies are needed to determine the possible association of anemia and stunting with the ongoing conflict in the region, as well as socioeconomic conditions and food insecurity in the region

    The Regulation of Leptin, Leptin Receptor and Pro-opiomelanocortin Expression by N-3 PUFAs in Diet-Induced Obese Mice Is Not Related to the Methylation of Their Promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The expression of leptin is increased in obesity and inhibited by n-3 polyunsaturated fatty acids (n-3 PUFAs), but the underlying molecular mechanisms have not been firmly established.</p> <p>Methods</p> <p>In this study, we investigated the effects of dietary n-3 PUFAs on the methylation of CpG islands in the promoter regions of the leptin, leptin-R and POMC genes, as well as the effects of n-3 PUFA status in early life on the modification of the promoters of these three genes. Male C57 BL/6J mice were fed a high-fat diet with one of four different fat types: sunflower oil (n-3 PUFA deficient), soy oil, fish oil, or a mixture of soy and fish oil (soy:fish oil = 1:1). Two low-fat diets with sunflower oil or soy oil served as controls. Female mice were fed two breeding diets, sunflower oil or a mixture of soy and fish oil (soy:fish oil = 1:1), during pregnancy and lactation to breed new pups.</p> <p>Results</p> <p>Compared to mice fed the control diets, the expression of leptin in fat tissue and leptin-R and POMC in the hypothalamus was higher in the diet-induced obesity (DIO) mice, and the n-3 PUFAs in the diets reversed these elevated expression levels. The mean methylation levels of CpG sites in the promoter regions of the leptin and POMC genes showed no difference between the DIO and the control diet groups nor between the n-3 PUFA-containing and -deficient diet groups. For the CpG sites in the promoter regions of leptin-R, no methylation was found in any of the DIO or control groups. Feeding mice with the n-3 PUFA diet during pregnancy and lactation did not affect CpG methylation in the leptin or POMC promoters.</p> <p>Conclusions</p> <p>Our findings indicate that promoter DNA methylation may not be related to the expression of leptin, leptin-R or its related hypothalamic satiety regulator POMC.</p

    Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion

    Get PDF
    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction

    Low serum sphingolipids in children with attention deficit-hyperactivity disorder

    Get PDF
    Background: Attention deficit-hyperactivity disorder (ADHD) is the most prevalent neuropsychiatric condition in childhood. ADHD is a multifactorial trait with a strong genetic component. One neurodevelopmental hypothesis is that ADHD is associated with a lag in brain maturation. Sphingolipids are essential for brain development and neuronal functioning, but their role in ADHD pathogenesis is unexplored. We hypothesized that serum sphingolipid levels distinguish ADHD patients from unaffected subjects. Methods: We characterized serum sphingolipid profiles of ADHD patients and two control groups: non-affected relatives and non-affected subjects without a family history of ADHD. Sphingolipids were measured by LC-MS/MS in 77 participants (28 ADHD patients, 28 related controls and 21 unrelated controls). ADHD diagnosis was based on the Diagnostic and Statistical Manual of Mental Disorders (DSM IV-TR). Diagnostic criteria were assessed by 2 independent observers. Groups were compared by parametrical statistics. Results: Serum sphingomyelins C16:0, C18:0, C18:1, C24:1, ceramide C24:0 and deoxy-ceramide C24:1 were significantly decreased in ADHD patients at 20-30% relative reductions. In our sample, decreased serum sphingomyelin levels distinguished ADHD patients with 79% sensitivity and 78% specificity. Conclusions: Our results showed lower levels of all major serum sphingomyelins in ADHD. These findings may reflect brain maturation and affect neuro-functional pathways characteristic for ADHD

    Adiponectin/resistin levels and insulin resistance in children: a four country comparison study

    Get PDF
    There are few reports on the effects of ethnicity or gender in the association between adipocytokines and insulin resistance in children of different ages. This study assessed associations between serum concentrations of adiponectin/resistin and parameters of insulin resistance in children from 4 different countries. A total of 2,290 children were analyzed in this study; each was from one of 4 different countries (Japan, Thailand, Italy and USA), and grouped according to age (8–11 years old in Group 1 and 12–15 years old in Group 2). Adioponectin was higher in female than in male children, and in Group 1 than in Group 2. Generally, adiponectin was lower in Asian as compared to Italian and American children. These tendencies remained even after adjustment for body mass index (BMI) or waist circumstance (WC). Among older children (Group 2), resistin was higher in female than in male children. Significant correlations by non-parametric univariate correlation coefficients and Spearman’s rank correlation coefficients were found between adiponectin and homeostasis model assessment of insulin resistance (HOMA-IR), and fasting serum insulin levels in young Japanese, Italian, and American female children(p < 0.01, p < 0.05, p < 0.05, respectively). Correlations between serum adiponectin and HOMA-IR were also found among older male Italian, American, and Thai children (p < 0.05, p < 0.001, p < 0.001, respectively). In multiple regression analysis by forced entry method, adiponectin correlated with HOMA-IR in Italian and American male children, and in all older female children regardless of country of origin. There was no correlation between resistin and markers of insulin resistance in children from any of the countries. We conclude that serum adiponectin concentrations are lower in Asian as compared to Italian and American children, and that adiponectin but not resistin contributes to differences in markers for insulin resistance in children from different populations

    Educating and training a workforce for nutrition in a post-2015 world.

    Get PDF
    Nearly all countries in the world today are burdened with malnutrition, manifesting as undernutrition, micronutrient deficiencies, and/or overweight and obesity. Despite some progress, efforts to alleviate malnutrition are hampered by a shortage in number, skills, and geographic coverage, of a workforce for nutrition. Here, we report the findings of the Castel Gandolfo workshop, a convening of experts from diverse fields in March 2014 to consider how to develop the capacity of a global cadre of nutrition professionals for the post-2015 development era. Workshop participants identified several requirements for developing a workforce for nutrition, including an ability to work as part of a multisectoral team; communication, advocacy, and leadership skills to engage decision makers; and a set of technical skills to address future challenges for nutrition. Other opportunities were highlighted that could immediately contribute to capacity development, including the creation of a consortium to link global North and South universities, online training modules for middle managers, and practical, hands-on experiences for frontline nutrition workers. Institutional and organizational support is needed to enable workshop recommendations on education and training to be effectively implemented and sustained. The findings from the Castel Gandolfo workshop can contribute to the delivery of successful nutrition-relevant actions in the face of mounting external pressures and informing and attaining the forthcoming Sustainable Development Goals

    DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice

    Get PDF
    Background and Purpose Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. Methods: 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Results: Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Conclusions: Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA
    corecore