15 research outputs found

    An imperfect G2M checkpoint contributes to chromosome instability following irradiation of S and G2 phase cells

    Get PDF
    DNA double strand break (DSB) repair and checkpoint control represent two major mechanisms that function to reduce chromosomal instability following ionising irradiation (IR). Ataxia telangiectasia (A-T) cells have long been known to have defective checkpoint responses. Recent studies have shown that they also have a DSB repair defect following IR raising the issue of how ATM’s repair and checkpoint functions interplay to maintain chromosomal stability. A-T and Artemis cells manifest an identical and epistatic repair defect throughout the cell cycle demonstrating that ATM’s major repair defect following IR represents Artemis-dependent end-processing. Artemis cells show efficient G2/M checkpoint induction and a prolonged arrest relative to normal cells. Following irradiation of G2 cells, this checkpoint is dependent on ATM and A-T cells fail to show checkpoint arrest. In contrast, cells irradiated during S phase initiate a G2/M checkpoint which is independent of ATM and, significantly, both Artemis and A-T cells show a prolonged arrest at the G2/M checkpoint likely reflecting their repair defect. Strikingly, the G2/M checkpoint is released before the completion of repair when approximately 10-20 DSBs remain both for S phase and G2 phase irradiated cells. This defined sensitivity level of the G2/M checkpoint explains the prolonged arrest in repair-deficient relative to normal cells and provides a conceptual framework for the co-operative phenotype between checkpoint and repair functions in maintaining chromosomal stability

    Understanding the limitations of radiation-induced cell cycle checkpoints

    Get PDF
    The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency

    Chromosome breakage after G2 checkpoint release

    Get PDF
    DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain

    The Maintenance of ATM Dependent G2/M Checkpoint Arrest Following Exposure to Ionizing Radiation

    Get PDF
    The G2/M checkpoint is important in preventing cells with unrepaired DNA double strand breaks (DSBs) entering mitosis, an event which is likely to result in genomic instability. We recently reported that checkpoint arrest is maintained until close to completion of DSB repair and that the duration of checkpoint arrest depends on the dose and DSB repair capacity rather than lasting for a fixed period of time. ATM leads to phosphorylation of Chk1/2 in G2 phase following exposure to ionizing radiation. These transducer kinases can phosphorylate and inhibit Cdc25 activity, which is the phosphatase regulating mitotic entry. In this study we dissect three processes that contribute to the maintenance of checkpoint arrest in irradiated G2 phase cells. First, the ATR-Chk1 pathway contributes to maintaining checkpoint arrest, although it is dispensable for the initial activation of checkpoint arrest. Second, ongoing ATM to Chk2 signalling from unrepaired DSBs contributes to checkpoint arrest. This process plays a greater role in a repair defective background. Finally, slow decay of the initially activated Chk2 also contributes to the maintenance of checkpoint arrest. 53BP1 and MDC1 defective cells show an initial checkpoint defect after low doses but are proficient in initial activation of arrest after high doses. After higher radiation doses, however, 53BP1-/- and MDC1-/- MEFs fail to maintain checkpoint arrest. Furthermore 53BP1-/- and MDC1-/- MEFs display elevated mitotic breakage even after high doses. We show that the defect in the maintenance of checkpoint arrest conferred by 53BP1 and MDC1 deficiency substantially enhances chromosome breakage

    Understanding the limitations of radiation-induced cell cycle checkpoints

    Get PDF
    The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency

    Elevated radiation-induced γH2AX foci in G2 phase heterozygous BRCA2 fibroblasts.

    No full text
    BACKGROUND AND PURPOSE: About 5-10% of all breast cancer cases are associated with heterozygous germ-line mutations in the genes encoding BRCA1 and BRCA2. Carriers of such mutations are highly predisposed for developing breast or ovarian cancer and, thus, are advised to undergo regular radio-diagnostic examinations. BRCA1 and BRCA2 are involved in multiple cellular processes including the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) and different studies addressing the DSB repair capacity of BRCA1+/- or BRCA2+/- cells led to contradictory results. MATERIALS AND METHODS: Using the sensitive method of γH2AX foci analysis in combination with cell cycle markers, we specifically measured DSB repair in confluent G0 as well as in exponentially growing G1 and G2 phase primary WT, BRCA1+/- and BRCA2+/- fibroblasts. RESULTS: Both BRCA1+/- and BRCA2+/- cells displayed normal DSB repair in G0 and in G1. In contrast, in G2, BRCA2+/- but not BRCA1+/- cells exhibited a decreased DSB repair capacity which was in between that of WT and that of a hypomorphic BRCA2-/- cell line. CONCLUSIONS: The residual amount of normal BRCA1 seems to be sufficient for efficient DSB repair in all cell cycle phases, while the decreased DSB repair capacity of heterozygous BRCA2 mutations suggests gene dosage effects in G2

    The limitations of the G1-S checkpoint

    No full text
    It has been proposed that the G1-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G1 phase. By monitoring S-phase entry of irradiated synchronized cells, we show that the duration of arrest is dose dependent, with S-phase entry recommencing after arrest with kinetics similar to that observed in unirradiated cells. Thus, G1-S checkpoint arrest is not always permanent. Following exposure to higher doses (≥2 Gy), G1-S arrest is inefficiently maintained, allowing progression of G1-phase cells into G2 with elevated γH2AX foci and chromosome breaks. At early times after irradiation (≤4 h), G1-S checkpoint arrest is not established but cells enter S phase at a reduced rate. This early slowing in S-phase entry is ATM and Chk2 dependent and detectable after 100 mGy, showing a novel and sensitive damage response. However, the time needed to establish G1-S checkpoint arrest provides a window when cells can progress to G2 and form chromosome breaks. Our findings detail the efficacy of the G1-S checkpoint and define two significant limitations: At early times after IR, the activated checkpoint fails to efficiently prevent S-phase entry, and at later times, the checkpoint is inefficiently maintained ©2010 AACR

    The Maintenance of ATM Dependent G2/M Checkpoint Arrest Following Exposure to Ionizing Radiation

    Get PDF
    The G2/M checkpoint is important in preventing cells with unrepaired DNA double strand breaks (DSBs) entering mitosis, an event which is likely to result in genomic instability. We recently reported that checkpoint arrest is maintained until close to completion of DSB repair and that the duration of checkpoint arrest depends on the dose and DSB repair capacity rather than lasting for a fixed period of time. ATM leads to phosphorylation of Chk1/2 in G2 phase following exposure to ionizing radiation. These transducer kinases can phosphorylate and inhibit Cdc25 activity, which is the phosphatase regulating mitotic entry. In this study we dissect three processes that contribute to the maintenance of checkpoint arrest in irradiated G2 phase cells. First, the ATR-Chk1 pathway contributes to maintaining checkpoint arrest, although it is dispensable for the initial activation of checkpoint arrest. Second, ongoing ATM to Chk2 signalling from unrepaired DSBs contributes to checkpoint arrest. This process plays a greater role in a repair defective background. Finally, slow decay of the initially activated Chk2 also contributes to the maintenance of checkpoint arrest. 53BP1 and MDC1 defective cells show an initial checkpoint defect after low doses but are proficient in initial activation of arrest after high doses. After higher radiation doses, however, 53BP1-/- and MDC1-/- MEFs fail to maintain checkpoint arrest. Furthermore 53BP1-/- and MDC1-/- MEFs display elevated mitotic breakage even after high doses. We show that the defect in the maintenance of checkpoint arrest conferred by 53BP1 and MDC1 deficiency substantially enhances chromosome breakage
    corecore