19 research outputs found

    The impact of beef sire breed on dystocia, stillbirth, gestation length, health, and lactation performance of cows that carry beef Ă— dairy calves

    No full text
    ABSTRACT: In the United States, it is becoming common for dairy herds to mate a portion of cows to beef semen to create a value-added calf. The objectives of this study were to determine if dystocia risk, stillbirth (SB) risk, gestation length (GL), probability of early-lactation clinical disease events, early-lactation culling risk, or subsequent milk production differ between cows that carried calves sired by different beef breeds and those that carried Holstein-sired calves. Records from 10 herds contained 75,256 lactations from 39,249 cows that had calves with known Holstein or beef breed sires from the years 2010 to 2023. Calf sire breeds with ≥150 records included in analyses were Holstein, Angus, Simmental, Limousin, crossbred beef, and Charolais. Additional beef sire breeds that existed in lower frequency (n < 150 records) were condensed together and classified as “other.” Because GL is a continuous variable, sire breed inclusion criteria were reduced to n ≥ 100 records; thus, Wagyu sires were included as their own breed group. Some records did not contain all variables of interest, thus models included fewer lactations depending on variable. Binomial generalized mixed models evaluated dystocia risk (defined as calving ease score ≥4 or calving ease score ≥3), SB risk, clinical health event risk (defined as lameness, mastitis, metabolic, reproductive, other, or any health events occurring within 60 d in milk [DIM]), and early culling risk (defined as death or culling within 60 DIM). Gestation length and test-date milk, fat, and protein yields were evaluated with mixed models. Calves sired by crossbred beef bulls had a greater probability of being stillborn (5%; 95% confidence interval lower = 2.9% upper = 9.0%) than those sired by Holstein bulls (2%; 95% confidence interval lower = 1.5%, upper = 2.7%). All beef-sired calves increased GL from that of Holstein-sired calves (277 ± 0.15 d) with Limousin (282 ± 0.81 d) and Wagyu-sired calves (285 d ± 0.79) resulting in the longest GL. The risk of dystocia, clinical health events, and early-lactation culling did not differ by calf sire breed nor did subsequent milk and component yield. Generally, carrying a calf sired by the beef breeds included in this study did not negatively affect the dairy cow

    Genetic evaluation of health costs in US organic Holstein calves and cows

    No full text
    Minimizing the incidence of disease on organic dairy farms is important for both economic and animal welfare purposes. The objective of this study was to estimate genetic parameters for total disease treatment costs using producer-recorded treatments in organic Holstein dairy calves and cows. Individual cow and calf health data were collected from 16 USDA certified organic farms from across the United States. Eleven of these farms provided treatment costs for some or all of the following cow health issues (mean cost): mastitis (46.10),milkfever(46.10), milk fever (39.05), ketosis (29.81),metritis(29.81), metritis (28.66), retained placenta (45.59),displacedabomasum(45.59), displaced abomasum (439.71), lameness (66.36),indigestion(66.36), indigestion (22.94), respiratory (48.35),anddied(48.35), and died (64.98). These farms also provided the following health costs for calves (mean cost): respiratory (56.37)andscours(56.37) and scours (25.21). Costs included consultant fees, therapeutics, and producer labor. The total lactational health cost (HCOST) was analyzed using animal models adjusted for the fixed effects of lactation and herd and the random effect of herd-year-season of calving with animal relationships based on the blending of pedigree and genomic relationships established from 2,347 genotyped cows. Along with HCOST, the binary traits stayability and presence of disease were included in a trivariate model such that lactations absent of disease were considered to be missing HCOST. To estimate the genetic relationship between nulliparous and primiparous health costs, a 2-trait linear model was fitted for total nulliparous health costs (NHCOST) and first lactation HCOST. The most expensive cow-lactation was $643.86 and 26.5% of lactations encountered disease. The heritability for HCOST was 0.03 ± 0.01, and the repeatability was 0.21 ± 0.01. The heritability of NHCOST was 0.06 ± 0.01, and the genetic correlation between NHCOST and HCOST was 0.98 ± 0.51. Traits representing the repeated nature of disease have a genetic component that should foster improved disease resistance among organic Holstein dairy cows. However, total cost of disease did not lead to gains in genetic variation over consideration of disease traits considered as binary variables and is a more laborious phenotype to obtain, diminishing its appeal for use in routine genetic evaluations

    Microbial composition, rumen fermentation parameters, enteric methane emissions, and lactational performance of phenotypically high and low methane-emitting dairy cows

    No full text
    ABSTRACT: This experiment was designed to investigate the relation of high and low methane-yield phenotypes with body weight (BW), dry matter intake (DMI), lactation performance, enteric CH4 emissions, and rumen fermentation parameters in lactating dairy cows. A total of 130 multi- and primiparous Holstein cows were screened for enteric CH4 emissions using the GreenFeed system (C-Lock Inc.). Out of these 130 cows, 5 were identified as phenotypically high (HM) and 5 as phenotypically low (LM) CH4 emitters. Cows in the LM group had lower daily enteric CH4 emissions than cows in the HM group (on average 346 vs. 439 g/d, respectively), lower CH4 yield (15.5 vs. 20.4 g of CH4/kg of DMI), and CH4 intensity (13.2 vs. 17.0 g of CH4/ kg of energy-corrected milk yield). Enteric emissions of CO2 and H2 did not differ between HM and LM cows. These 10 cows were blocked by parity, days in milk, and milk production, and were used in a 5-wk randomized complete block design experiment. Milk composition, production, and BW were also not different between LM and HM cows. The concentration of total volatile fatty acids in ruminal contents did not differ between CH4 phenotypes, but LM cows had a lower molar proportion of acetate (57 vs. 62.1%), a higher proportion of propionate (27.5 vs. 21.6%, respectively), and therefore a lower acetate-to-propionate ratio than HM cows. Consistently, the 16S cDNA analysis revealed the abundance of Succinivibrionaceae and unclassified Veillonellaceae to be higher in LM cows compared with HM cows, bacteria that were positively correlated with ruminal propionate concentration. Notably, Succinivibrionaceae trigger the formation of propionate via oxaloacetate pathway from phosphoenolpyruvate via Enzyme Commission: 4.1.1.49, which showed a trend to be higher in LM cows compared with HM cows. Additionally, LM cows possessed fewer transcripts of a gene encoding for methyl-CoM reductase enzyme compared with HM. In this study, low and high CH4-yield cows have similar production performance and milk composition, but total-tract apparent digestibility of organic matter and fiber fractions was lower in the former group of animals
    corecore