1,174 research outputs found
Electrocardiographic assessments and cardiac events after fingolimod first dose – a comprehensive monitoring study
Background First dose observation for cardiac effects is required for
fingolimod, but recommendations on the extent vary. This study aims to assess
cardiac safety of fingolimod first dose. Individual bradyarrhythmic episodes
were evaluated to assess the relevance of continuous electrocardiogram (ECG)
monitoring. Methods START is an ongoing open-label, multi-center study. At the
time of analysis 3951 patients were enrolled. The primary endpoints are the
incidence of bradycardia (heart rate < 45 bpm) and second-/third-degree AV
blocks during treatment initiation. The relevance of Holter was assessed by
matching ECG findings with the occurrence of clinical symptoms as well as by
rigorous analysis of AV blocks with regard to the duration of pauses and the
minimal heart rate recorded during AV block. Results Thirty-one patients
(0.8%) developed bradycardia (<45 bpm), 62 patients (1.6%) had second-degree
Mobitz I and/or 2:1 AV blocks with a lowest reading (i.e. mean of ten
consecutive beats) of 35 bpm and the longest pause lasting for 2.6 s. No
Mobitz II or third-degree AV blocks were observed. Only one patient complained
about mild chest discomfort and fatigue. After 1 week, there was no second
-/third-degree AV block. Conclusions Continuous Holter ECG monitoring in this
large real-life cohort revealed that bradycardia and AV conduction
abnormalities were rare, transient and benign. No further unexpected
abnormalities were detected. The data presented here give an indication that
continuous Holter ECG monitoring does not add clinically relevant value to
patients’ safety. Trial registration NCT01585298; registered April 23, 2012
Modeling superimposed preeclampsia using Ang II (Angiotensin II) infusion in pregnant stroke-prone spontaneously hypertensive rats
Hypertensive disorders of pregnancy are the second leading cause of maternal deaths worldwide. Superimposed preeclampsia is an increasingly common problem and often associated with impaired placental perfusion. Understanding the underlying mechanisms and developing treatment options are crucial. The pregnant stroke-prone spontaneously hypertensive rat has impaired uteroplacental blood flow and abnormal uterine artery remodeling. We used Ang II (angiotensin II) infusion in pregnant stroke-prone spontaneously hypertensive rats to mimic the increased cardiovascular stress associated with superimposed preeclampsia and examine the impact on the maternal cardiovascular system and fetal development. Continuous infusion of Ang II at 500 or 1000 ng/kg per minute was administered from gestational day 10.5 until term. Radiotelemetry and echocardiography were used to monitor hemodynamic and cardiovascular changes, and urine was collected prepregnancy and throughout gestation. Uterine artery myography assessed uteroplacental vascular function and structure. Fetal measurements were made at gestational day 18.5, and placentas were collected for histological and gene expression analyses. The 1000 ng/kg per minute Ang II treatment significantly increased blood pressure (P<0.01), reduced cardiac output (P<0.05), and reduced diameter and increased stiffness of the uterine arteries (P<0.01) during pregnancy. The albumin:creatinine ratio was increased in both Ang II treatment groups (P<0.05; P<0.0001). The 1000 ng/kg per minute–treated fetuses were significantly smaller than vehicle treatment (P<0.001). Placental expression of Ang II receptors was increased in the junctional zone in 1000 ng/kg per minute Ang II–treated groups (P<0.05), with this zone showing depletion of glycogen content and structural abnormalities. Ang II infusion in pregnant stroke-prone spontaneously hypertensive rats mirrors hemodynamic, cardiac, and urinary profiles observed in preeclamptic women, with evidence of impaired fetal growth
Inhibition of Trophoblast-Induced Spiral Artery Remodeling Reduces Placental Perfusion in Rat Pregnancy.
Rats harboring the human angiotensinogen and human renin genes develop preeclamptic features in pregnancy. The preeclamptic rats exhibit a deeper trophoblast invasion associated with a reduced resistance index by uterine
Doppler. Doxycycline inhibits matrix metalloproteinase activity. We tested the hypothesis that matrix metalloproteinase inhibition reduces trophoblast invasion with subsequent changes in placental perfusion. Preeclamptic and pregnant control Sprague-Dawley rats were treated with doxycycline (30 mg/kg of body weight orally) from gestational day 12 until day 18. Placental perfusion was assessed using a micromarker contrast agent. The animals were euthanized on day 18 of pregnancy; biometric data were acquired, and trophoblast invasion was analyzed. Doxycycline resulted in intrauterine growth retardation and lighter placentas in both groups. Maternal body weight was not affected. As shown earlier, preeclamptic rats exhibited a deeper endovascular trophoblast invasion. However, doxycycline treatment reduced trophoblast invasion in the preeclamptic rats. The physiological spiral artery remodeling, as assessed by the deposition of fibrinoid and α-actin in the spiral artery contour, was significantly reduced by doxycycline. The vascularity index, as assessed by perfusion measurement of the placenta, was reduced after doxycycline treatment in preeclamptic rats. Thus, matrix metalloproteinase inhibition with doxycycline leads to reduced trophoblast invasion and associated reduced placental perfusion. These studies are the first to show that reducing trophoblast-induced vascular remodeling decreases subsequent placental perfusion. Our model allows the study of dysregulated trophoblast invasion and vascular remodeling in vivo to gain important insights into preeclampsia-related mechanisms
Cardiovascular Programming During and After Diabetic Pregnancy: Role of Placental Dysfunction and IUGR
Intrauterine growth restriction (IUGR) is a condition whereby a fetus is unable to achieve its genetically determined potential size. IUGR is a global health challenge due to high mortality and morbidity amongst affected neonates. It is a multifactorial condition caused by maternal, fetal, placental, and genetic confounders. Babies born of diabetic pregnancies are usually large for gestational age but under certain conditions whereby prolonged uncontrolled hyperglycemia leads to placental dysfunction, the outcome of the pregnancy is an intrauterine growth restricted fetus with clinical features of malnutrition. Placental dysfunction leads to undernutrition and hypoxia, which triggers gene modification in the developing fetus due to fetal adaptation to adverse utero environmental conditions. Thus, in utero genemodification results in future cardiovascular programming in postnatal and adult life. Ongoing research aims to broaden our understanding of the molecular mechanisms and pathological pathways involved in fetal programming due to IUGR. There is a need for the development of effective preventive and therapeutic strategies for the management of growth-restricted infants. Information on the mechanisms involved with in utero epigenetic modification leading to development of cardiovascular disease in adult life will increase our understanding and allow the identification of susceptible individuals as well as the design of targeted prevention strategies. This article aims to systematically review the latest molecular mechanisms involved in the pathogenesis of IUGR in cardiovascular programming. Animal models of IUGR that used nutrient restriction and hypoxia to mimic the clinical conditions in humans of reduced flow of nutrients and oxygen to the fetus will be discussed in terms of cardiac remodeling and epigenetic programming of cardiovascular disease. Experimental evidence of long-term fetal programming due to IUGR will also be included
Effects of Circulating and Local Uteroplacental Angiotensin II in Rat Pregnancy.
The renin-angiotensin (Ang) system is important during placental development. Dysregulation of the renin-Ang system is important in preeclampsia (PE). Female rats transgenic for the human angiotensinogen gene crossed with males transgenic for the human renin gene develop the PE syndrome, whereas those of the opposite cross do not. We used this model to study the role of Ang II in trophoblast invasion, which is shallow in human PE but deeper in this model. We investigated the following groups: PE rats, opposite-cross rats, Ang II–infused rats (1000 ng/kg per day), and control rats. Ang II infusion increased only circulating Ang II levels (267.82 pg/mL), opposite cross influenced only uteroplacental Ang II (13.52 fmol/mg of protein), and PE increased both circulating (251.09 pg/mL) and uteroplacental (19.24 fmol/mg of protein) Ang II. Blood pressure and albuminuria occurred in the models with high circulating Ang II but not in the other models. Trophoblast invasion increased in PE and opposite-cross rats but not in Ang II–infused rats. Correspondingly, uterine artery resistance index increased in Ang II–infused rats but decreased in PE rats. We then studied human trophoblasts and villous explants from first-trimester pregnancies with time-lapse microscopy. Local Ang II dose-dependently increased migration by 75%, invasion by 58%, and motility by 282%. The data suggest that local tissue Ang II stimulates trophoblast invasion in vivo in the rat and in vitro in human cells, a hitherto fore unrecognized function. Conceivably, upregulation of tissue Ang II in the maternal part of the placenta represents an important growth factor for trophoblast invasion and migration
Impact of stable angina on health status and quality of life perception of currently treated patients. The BRIDGE 2 survey.
OBJECTIVE: to explore 1) the perception of stable angina (SA) - impact on quality of life (QoL) and current condition related to SA; 2) SA burden - symptoms and frequency of anginal episodes; 3) impairment attributable to SA - limitations in daily activities and impact on work; 4) characteristics that might affect the patients' perception." METHOD: a proprietary questionnaire was administered on-line to SA patients selected using a purpose-built screening program from general population panels collaborating with IQVIA in Italy, Germany, Spain, and the UK. Exploratory analyses were performed: descriptive statistics on the total sample and different stratifications (gender, age class, time since diagnosis) were provided; we used Chi-square tests to compare subgroups. RESULTS: of more than 25,000 subjects who accessed the survey, 268 were eligible and completed the questionnaire: mean age was 61 years and women accounted for 30%. Despite being treated, about 40% of patients reported that SA impacted "completely" or "very much" their QoL, 10% rated their condition as "not good", and 45.1% stated that they felt "Fair". The majority of patients were still symptomatic and many of them perceived that SA had a major impact on their working life. Women, younger patients and those with a more recent diagnosis reported a worse self-assessment of their condition, QoL and symptom burden. CONCLUSIONS: the results of our survey provide new insights on how patients with SA perceived their own health status and suggest that any patient with SA deserves a more detailed and accurate evaluation by their physicians
Continuous blood glucose monitoring reveals enormous circadian variations in pregnant diabetic rats
Aim: Diabetes in pregnancy is a major burden with acute and long-term consequences. Its treatment requires adequate diagnosis and monitoring of therapy. Many experimental research on diabetes during pregnancy has been performed in rats. Recently, continuous blood glucose monitoring of non-pregnant diabetic rats revealed an increased circadian variability of blood glucose that made a single blood glucose measurement per day inappropriate to reflect glycemic status. Continuous blood glucose measurement has never been performed in pregnant rats. We wanted to perform continuous blood glucose monitoring in pregnant rats to decipher the influence of pregnancy on blood glucose in diabetic and normoglycemic status. Methods: We used the transgenic Tet29 diabetes rat model with an inducible knock down of the insulin receptor via RNA interference upon application of doxycycline (DOX) leading to insulin resistant type II diabetes. All Tet29 rats received a HD-XG telemetry implant (Data Sciences International, USA) that measured blood glucose and activity continuously. Rats were divided into four groups and blood glucose was monitored until end of pregnancy or the corresponding period: Tet29 + DOX (diabetic) non-pregnant, Tet29 + DOX (diabetic) pregnant, Tet29 (normoglycemic) non-pregnant, Tet29 (normoglycemic) pregnant. Results: Allanalyzed rats displayed a circadian variation in blood glucose concentration. Circadian variability was much more pronounced in pregnant diabetic rats than in normoglycemic pregnant rats. Pregnancy ameliorated variation in blood glucose in diabetic situation. Pregnancy continuously decreased blood glucose during normoglycemic pregnancy. Diabetic rats were less active than normoglycemic rats. We performed a calculation showing that application of continuous blood glucose measurement reduces Interpretation: Continuous blood glucose monitoring via a telemetry device in pregnant rats provides a more informative picture of the glycemic situation in comparison to single measurements. This could improve diagnosis and therapy of diabetes, decrease animal numbers within experimental settings, and add another physiological parameter (activity) to the analysis that could be helpful in testing therapeutic concepts targeting blood glucose levels and peripheral muscle function. We propose continuous glucose monitoring as a new tool for the evaluation of pregnant diabetic rats
Vitamin D antagonizes negative effects of preeclampsia on fetal endothelial colony forming cell number and function
Context: Endothelial dysfunction is a primary feature of preeclampsia, a pregnancy complication associated with an increased future cardiovascular risk for mother and offspring. Endothelial colony forming cells (ECFC) are endothelial progenitor cells that participate in vasculogenesis and endothelial repair. Objective: We hypothesized that the number and functional properties of fetal cord blood-derived ECFCs are reduced in preeclampsia compared to uncomplicated pregnancy (controls), and asked if adverse effects of preeclampsia on ECFC function are reversed by 1,25 (OH)2 vitamin D3. Design, Setting, Patients: This was a nested, case-control study. Forty women with uncomplicated pregnancy and 33 women with PE were recruited at Magee-Womens Hospital (USA) or at Hannover Medical School (Germany). Main Outcome Measures: Time to ECFC colony appearance in culture, and number of colonies formed, were determined. Functional abilities of ECFCs were assessed in vitro by tubule formation in Matrigel assay, migration, and proliferation. ECFC function was tested in the presence or absence of 1,25 (OH)2 vitamin D 3, and after vitamin D receptor (VDR) or VEGF signaling blockade. Results: The number of cord ECFC colonies was lower (P = 0.04) in preeclampsia compared to controls. ECFCs from preeclampsia showed reduced proliferation (P<0.0001), formed fewer tubules (P = 0.02), and migrated less (P = 0.049) than control. Vitamin D3 significantly improved preeclampsia ECFC functional properties. VDR- or VEGF blockade reduced tubule formation, partially restorable by vitamin D3. Conclusion: Fetal ECFCs from preeclamptic pregnancies are reduced in number and dysfunctional. Vitamin D3 had rescuing effects. This may have implications for the increased cardiovascular risk associated with preeclampsia. © 2014 von Versen-Höynck et al
Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease
Background In the recent years, a role of the immune system in Huntington’s
disease (HD) is increasingly recognized. Here we investigate the presence of T
cell activating auto-antibodies against angiotensin II type 1 receptors (AT1R)
in all stages of the disease as compared to healthy controls and patients
suffering from multiple sclerosis (MS) as a prototype neurologic autoimmune
disease. Results As compared to controls, MS patients show higher titers of
anti-AT1R antibodies, especially in individuals with active disease. In HD,
anti-AT1R antibodies are more frequent than in healthy controls or even MS and
occur in 37.9% of patients with relevant titers ≥ 20 U/ml. In a correlation
analysis with clinical parameters, the presence of AT1R antibodies in the sera
of HD individuals inversely correlated with the age of onset and positively
with the disease burden score as well as with smoking and infection.
Conclusions These data suggest a dysfunction of the adaptive immune system in
HD which may be triggered by different stimuli including autoimmune responses,
infection and possibly also smoking
Vitamin D depletion aggravates hypertension and target-organ damage
BACKGROUND: We tested the controversial hypothesis that vitamin D depletion aggravates hypertension and target-organ damage by influencing renin. METHODS AND RESULTS: Four-week-old double-transgenic rats (dTGR) with excess angiotensin (Ang) II production due to overexpression of the human renin (hREN) and angiotensinogen (hAGT) genes received vitamin D-depleted (n=18) or standard chow (n=15) for 3 weeks. The depleted group had very low serum 25-hydroxyvitamin D levels (mean+/-SEM; 3.8+/-0.29 versus 40.6+/-1.19 nmol/L) and had higher mean systolic BP at week 5 (158+/-3.5 versus 134.6+/-3.7 mm Hg, P<0.001), week 6 (176.6+/-3.3 versus 162.3+/-3.8 mm Hg, P<0.01), and week 7 (171.6+/-5.1 versus 155.9+/-4.3 mm Hg, P<0.05). Vitamin D depletion led to increased relative heart weights and increased serum creatinine concentrations. Furthermore, the mRNAs of natriuretic peptides, neutrophil gelatinase-associated lipocalin, hREN, and rRen were increased by vitamin D depletion. Regulatory T cells in the spleen and in the circulation were not affected. Ang metabolites, including Ang II and the counter-regulatory breakdown product Ang 1 to 7, were significantly up-regulated in the vitamin D-depleted groups, while ACE-1 and ACE-2 activities were not affected. CONCLUSIONS: Short-term severe vitamin D depletion aggravated hypertension and target-organ damage in dTGR. Our data suggest that even short-term severe vitamin D deficiency may directly promote hypertension and impacts on renin-angiotensin system components that could contribute to target-organ damage. The findings add to the evidence that vitamin D deficiency could also affect human hypertension
- …
