52 research outputs found

    LimidĂ©s jurassiques de l’Est du bassin de Paris

    Get PDF

    Halcyornis toliapicus (aves: Lower Eocene, England) indicates advanced neuromorphology in Mesozoic Neornithes

    Get PDF
    Our recent X-ray micro computer-tomographic (ÎŒCT) investigations of Prophaethon shrubsolei and Odontopteryx toliapica from the Lower Eocene London Clay Formation of England revealed the avian brain to have been essentially modern in form by 55 Ma, but that an important vision-related synapomorphy of living birds, the eminentia sagittalis of the telencephalon, was poorly developed. This evidence suggested that the feature probably appeared close to the end of the Mesozoic. Here we use ÎŒCT analysis to describe the endocranium of Halcyornis toliapicus, also from the London Clay Formation. The affinities of Halcyornis have been hotly debated, with the taxon referred to the Charadriiformes (Laridae), Coraciiformes (Alcedinidae, and its own family Halcyornithidae) and most recently that Halcyornithidae may be a possible senior synonym of Pseudasturidae (Pan-Psittaciformes). Unlike Prophaethon and Odontopteryx, the eminentia sagittalis of Halcyornis is strongly developed and comparable to that of living species. Like those London Clay taxa, the eminentia sagittalis occupies a rostral position on the telencephalon. The senses of Halcyornis appear to have been well developed. The length of the cochlear duct of the inner ear indicates a hearing sensitivity within the upper range of living species, and enlarged olfactory lobes suggest a reasonable reliance on sense of smell. The optic nerves were especially well developed which, together with the strong development of the eminentia sagittalis, indicates a high degree of visual specialization in Halcyornis. The advanced development of the eminentia sagittalis further supports a Mesozoic age for the appearance of this structure and associated neural architectural complexity found in extant Aves. The eminentia sagittalis of living Psittaciformes is situated caudally on the telencephalon, making a Pan-Psittaciformes relationship unlikely for Halcyorni

    Digital Cranial Endocast of Hyopsodus (Mammalia, “Condylarthra”): A Case of Paleogene Terrestrial Echolocation?

    Get PDF
    We here describe the endocranial cast of the Eocene archaic ungulate Hyopsodus lepidus AMNH 143783 (Bridgerian, North America) reconstructed from X-ray computed microtomography data. This represents the first complete cranial endocast known for Hyopsodontinae. The Hyopsodus endocast is compared to other known “condylarthran” endocasts, i. e. those of Pleuraspidotherium (Pleuraspidotheriidae), Arctocyon (Arctocyonidae), Meniscotherium (Meniscotheriidae), Phenacodus (Phenacodontidae), as well as to basal perissodactyls (Hyracotherium) and artiodactyls (Cebochoerus, Homacodon). Hyopsodus presents one of the highest encephalization quotients of archaic ungulates and shows an “advanced version” of the basal ungulate brain pattern, with a mosaic of archaic characters such as large olfactory bulbs, weak ventral expansion of the neopallium, and absence of neopallium fissuration, as well as more specialized ones such as the relative reduction of the cerebellum compared to cerebrum or the enlargement of the inferior colliculus. As in other archaic ungulates, Hyopsodus midbrain exposure is important, but it exhibits a dorsally protruding largely developed inferior colliculus, a feature unique among “Condylarthra”. A potential correlation between the development of the inferior colliculus in Hyopsodus and the use of terrestrial echolocation as observed in extant tenrecs and shrews is discussed. The detailed analysis of the overall morphology of the postcranial skeleton of Hyopsodus indicates a nimble, fast moving animal that likely lived in burrows. This would be compatible with terrestrial echolocation used by the animal to investigate subterranean habitat and/or to minimize predation during nocturnal exploration of the environment

    Virtual endocranial cast of earliest eocene diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    No full text
    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. © 2012 The Royal Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A fossil brain from the Cretaceous of European Russia and avian sensory evolution

    No full text
    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90?Myr ago). This fossil also provides insights into previous ‘bird-like’ brain reconstructions for the most basal avian Archaeopteryx—reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered fligh
    • 

    corecore