53 research outputs found

    Isospin Dependence of the Spin-Orbit Force and Effective Nuclear Potentials,

    Full text link
    The isospin dependence of the spin-orbit potential is investigated for an effective Skyrme-like energy functional suitable for density dependent Hartree-Fock calculations. The magnitude of the isospin dependence is obtained from a fit to experimental data on finite spherical nuclei. It is found to be close to that of relativistic Hartree models. Consequently, the anomalous kink in the isotope shifts of Pb nuclei is well reproduced.Comment: Revised, 11 pages (Revtex) and 2 figures available upon request, Preprint MPA-833, Physical Review Letters (in press)

    Saturation properties and incompressibility of nuclear matter: A consistent determination from nuclear masses

    Get PDF
    Starting with a two-body effective nucleon-nucleon interaction, it is shown that the infinite nuclear matter model of atomic nuclei is more appropriate than the conventional Bethe-Weizsacker like mass formulae to extract saturation properties of nuclear matter from nuclear masses. In particular, the saturation density thus obtained agrees with that of electron scattering data and the Hartree-Fock calculations. For the first time using nuclear mass formula, the radius constant r0r_0=1.138 fm and binding energy per nucleon ava_v = -16.11 MeV, corresponding to the infinite nuclear matter, are consistently obtained from the same source. An important offshoot of this study is the determination of nuclear matter incompressibility KK_{\infty} to be 288±\pm 28 MeV using the same source of nuclear masses as input.Comment: 14 latex pages, five figures available on request ( to appear in Phy. Rev. C

    A systematic study of Zr and Sn isotopes in the Relativistic Mean Field theory

    Full text link
    The ground-state properties of Zr and Sn isotopes are studied within the relativistic mean field theory. Zr and Sn isotopes have received tremendous attention due to various reasons, including the predicted giant halos in the neutron-rich Zr isotopes, the unique feature of being robustly spherical in the region of 100^{100}Sn \sim 132^{132}Sn and the particular interest of Sn isotopes to nuclear astrophysics. Furthermore, four (semi-) magic neutron numbers, 40, 50, 82 and 126, make these two isotopic chains particularly important to test the pairing correlations and the deformations in a microscopic model. In the present work, we carry out a systematic study of Zr and Sn isotopes from the proton drip line to the neutron drip line with deformation effects, pairing correlations and blocking effects for nuclei with odd number of neutrons properly treated. A constrained calculation with quadrupole deformations is performed to find the absolute minimum for each nucleus on the deformation surface. All ground-state properties, including the separation energies, the odd-even staggerings, the nuclear radii, the deformations and the single-particle spectra are analyzed and discussed in detail.Comment: the final version to appear in Modern Physics Letters A. more figures, discussions, and references added. the data remain unchange

    Thermal shape fluctuation effects in the description of hot nuclei

    Full text link
    The behavior of several nuclear properties with temperature is analyzed within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB) theory with the Gogny force and large configuration spaces. Thermal shape fluctuations in the quadrupole degree of freedom, around the mean field solution, are taken into account with the Landau prescription. As representative examples the nuclei 164^{164}Er, 152^{152}Dy and 192^{192}Hg are studied. Numerical results for the superfluid to normal and deformed to spherical shape transitions are presented. We found a substantial effect of the fluctuations on the average value of several observables. In particular, we get a decrease in the critical temperature (TcT_c) for the shape transition as compared with the plain FTHFB prediction as well as a washing out of the shape transition signatures. The new values of TcT_c are closer to the ones found in Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure

    Isoscalar dipole coherence at low energies and forbidden E1 strength

    Full text link
    In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED) exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum rule is experimentally known, but conspicuously absent from recent theoretical investigations of ISD strength. The IS-LED mode coincides with the so-called isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the fully self-consistent Random-Phase-Approximation with finite-range forces, phenomenological and realistic, yields a collective IS-LED mode, typically overestimating its excitation energy, but correctly describing its IS strength and electroexcitation form factor. The presence of E1 strength is solely due to the Coulomb interaction between the protons and the resulting isospin-symmetry breaking. The smallness of its value is related to the form of the transition density, due to translational invariance. The calculated values of E1 and ISD strength carried by the IS-LED depend on the effective interaction used. Attention is drawn to the possibility that in N-not-equal-Z nuclei this distinct mode of IS surface vibration can develop as such or mix strongly with skin modes and thus influence the pygmy dipole strength as well as the ISD strength function. In general, theoretical models currently in use may be unfit to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte

    Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction

    Get PDF
    A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov (TDHFB) equations with Gogny interaction is proposed. The feasibility of the TDHFB code is illustrated by the conservation of the energy, particle numbers, and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB code is applied to the isoscalar quadrupole and/or isovector dipole vibrations in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22 and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector dipole strength functions are calculated from the expectation values of the isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure

    Hartree Fock Calculations in the Density Matrix Expansion Approach

    Get PDF
    The density matrix expansion is used to derive a local energy density functional for finite range interactions with a realistic meson exchange structure. Exchange contributions are treated in a local momentum approximation. A generalized Slater approximation is used for the density matrix where an effective local Fermi momentum is chosen such that the next to leading order off-diagonal term is canceled. Hartree-Fock equations are derived incorporating the momentum structure of the underlying finite range interaction. For applications a density dependent effective interaction is determined from a G-matrix which is renormalized such that the saturation properties of symmetric nuclear matter are reproduced. Intending applications to systems far off stability special attention is paid to the low density regime and asymmetric nuclear matter. Results are compared to predictions obtained from Skyrme interactions. The ground state properties of stable nuclei are well reproduced without further adjustments of parameters. The potential of the approach is further exemplified in calculations for A=100...140 tin isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st

    Many-body perturbation calculation of spherical nuclei with a separable monopole interaction: I. Finite nuclei

    Get PDF
    We present calculations of ground state properties of spherical, doubly closed-shell nuclei from 16^{16}O to 208^{208}Pb employing the techniques of many-body perturbation theory using a separable density dependent monopole interaction. The model gives results in Hartree-Fock order which are of similar quality to other effective density-dependent interactions. In addition, second and third order perturbation corrections to the binding energy are calculated and are found to contribute small, but non-negligible corrections beyond the mean-field result. The perturbation series converges quickly, suggesting that this method may be used to calculate fully correlated wavefunctions with only second or third order perturbation theory. We discuss the quality of the results and suggest possible methods of improvement.Comment: 20 Pages, 11 figure

    Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

    Get PDF
    We present results obtained in the calculation of nuclear ground state properties in relativistic Hartree approximation using a Lagrangian whose QCD-scaled coupling constants are all natural (dimensionless and of order 1). Our model consists of four-, six-, and eight-fermion point couplings (contact interactions) together with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the corresponding mesonic interactions. The coupling constants have been determined in a self-consistent procedure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground state properties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants are all natural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.Comment: 44 pages, 13 figures, 9 tables, REVTEX, accepted for publication in Phys. Rev.

    Pairing in nuclear systems: from neutron stars to finite nuclei

    Full text link
    We discuss several pairing-related phenomena in nuclear systems, ranging from superfluidity in neutron stars to the gradual breaking of pairs in finite nuclei. We focus on the links between many-body pairing as it evolves from the underlying nucleon-nucleon interaction and the eventual experimental and theoretical manifestations of superfluidity in infinite nuclear matter and of pairing in finite nuclei. We analyse the nature of pair correlations in nuclei and their potential impact on nuclear structure experiments. We also describe recent experimental evidence that points to a relation between pairing and phase transitions (or transformations) in finite nuclear systems. Finally, we discuss recent investigations of ground-state properties of random two-body interactions where pairing plays little role although the interactions yield interesting nuclear properties such as 0+ ground states in even-even nuclei.Comment: 74 pages, 33 figs, uses revtex4. Submitted to Reviews of Modern Physic
    corecore