62 research outputs found

    Breast Cancer in the Personal Genomics Era

    Get PDF
    Breast cancer is a heterogeneous disease with a complex etiology that develops from different cellular lineages, progresses along multiple molecular pathways, and demonstrates wide variability in response to treatment. The “standard of care” approach to breast cancer treatment in which all patients receive similar interventions is rapidly being replaced by personalized medicine, based on molecular characteristics of individual patients. Both inherited and somatic genomic variation is providing useful information for customizing treatment regimens for breast cancer to maximize efficacy and minimize adverse side effects. In this article, we review (1) hereditary breast cancer and current use of inherited susceptibility genes in patient management; (2) the potential of newly-identified breast cancer-susceptibility variants for improving risk assessment; (3) advantages and disadvantages of direct-to-consumer testing; (4) molecular characterization of sporadic breast cancer through immunohistochemistry and gene expression profiling and opportunities for personalized prognostics; and (5) pharmacogenomic influences on the effectiveness of current breast cancer treatments. Molecular genomics has the potential to revolutionize clinical practice and improve the lives of women with breast cancer

    Analysis of the Genome and Mobilome of a Dissimilatory Arsenate Reducing Aeromonas sp. O23A Reveals Multiple Mechanisms for Heavy Metal Resistance and Metabolism

    Get PDF
    Aeromonas spp. are among the most ubiquitous microorganisms, as they have been isolated from different environmental niches including waters, soil, as well as wounds and digestive tracts of poikilothermic animals and humans. Although much attention has been paid to the pathogenicity of Aeromonads, the role of these bacteria in environmentally important processes, such as transformation of heavy metals, remains to be discovered. Therefore, the aim of this study was a detailed genomic characterization of Aeromonas sp. O23A, the first representative of this genus capable of dissimilatory arsenate reduction. The strain was isolated from microbial mats from the Zloty Stok mine (SW Poland), an environment strongly contaminated with arsenic. Previous physiological studies indicated that O23A may be involved in both mobilization and immobilization of this metalloid in the environment. To discover the molecular basis of the mechanisms behind the observed abilities, the genome of O23A (∟5.0 Mbp) was sequenced and annotated, and genes for arsenic respiration, heavy metal resistance (hmr) and other phenotypic traits, including siderophore production, were identified. The functionality of the indicated gene modules was assessed in a series of minimal inhibitory concentration analyses for various metals and metalloids, as well as mineral dissolution experiments. Interestingly, comparative analyses revealed that O23A is related to a fish pathogen Aeromonas salmonicida subsp. salmonicida A449 which, however, does not carry genes for arsenic respiration. This indicates that the dissimilatory arsenate reduction ability may have been lost during genome reduction in pathogenic strains, or acquired through horizontal gene transfer. Therefore, particular emphasis was placed upon the mobilome of O23A, consisting of four plasmids, a phage, and numerous transposable elements, which may play a role in the dissemination of hmr and arsenic metabolism genes in the environment. The obtained results indicate that Aeromonas sp. O23A is well-adapted to the extreme environmental conditions occurring in the Zloty Stok mine. The analysis of genome encoded traits allowed for a better understanding of the mechanisms of adaptation of the strain, also with respect to its presumable role in colonization and remediation of arsenic-contaminated waters, which may never have been discovered based on physiological analyses alone

    Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers – Diversity and Role in Adaptation to Polar Environments

    Get PDF
    Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron–sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers

    Application of Metagenomic Analyses in Dentistry as a Novel Strategy Enabling Complex Insight into Microbial Diversity of the Oral Cavity

    Get PDF
    The composition of the oral microbiome in healthy individuals is complex and dynamic, and depends on many factors, such as anatomi­cal location in the oral cavity, diet, oral hygiene habits or host immune responses. It is estimated at present that worldwide about 2 billion people suffer from diseases of the oral cavity, mainly periodontal disease and dental caries. Importantly, the oral microflora involved in local infections may spread and cause systemic, even life-threatening infections. In search for etiological agents of infections in dentistry, traditional approaches are not sufficient, as about 50% of oral bacteria are not cultivable. Instead, metagenomic analyses are particularly useful for studies of the complex oral microbiome – both in healthy individuals, and in patients with oral and dental diseases. In this paper we review the current and future applications of metagenomic studies in evaluation of both the composition of the oral microbiome as well as its potential pathogenic role in infections in dentistry

    Effects of cardiovascular lifestyle change on lipoprotein subclass profiles defined by nuclear magnetic resonance spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-density lipoprotein (LDL) cholesterol lowering is a primary goal in clinical management of patients with cardiovascular disease, but traditional cholesterol levels may not accurately reflect the true atherogenicity of plasma lipid profiles. The size and concentration of lipoprotein particles, which transport cholesterol and triglycerides, may provide additional information for accurately assessing cardiovascular risk. This study evaluated changes in plasma lipoprotein profiles determined by nuclear magnetic resonance (NMR) spectroscopy in patients participating in a prospective, nonrandomized lifestyle modification program designed to reverse or stabilize progression of coronary artery disease (CAD) to improve our understanding of lipoprotein management in cardiac patients.</p> <p>Results</p> <p>The lifestyle intervention was effective in producing significant changes in lipoprotein subclasses that contribute to CAD risk. There was a clear beneficial effect on the total number of LDL particles (-8.3%, p < 0.05 compared to matched controls), small dense LDL particles (-9.5%, p < 0.05), and LDL particle size (+0.8%; p < 0.05). Likewise, participants showed significant improvement in traditional CAD risk factors such as body mass index (-9.9%, p < 0.01 compared to controls), total cholesterol (-5.5%, p < 0.05), physical fitness (+37.2%, p < 0.01), and future risk for CAD (-7.9%, p < 0.01). Men and women responded differently to the program for all clinically-relevant variables, with men deriving greater benefit in terms of lipoprotein atherogenicity. Plasma lipid and lipoprotein responses to the lifestyle change program were not confounded by lipid-lowering medications.</p> <p>Conclusion</p> <p>In <it>at risk </it>patients motivated to participate, an intensive lifestyle change program can effectively alter traditional CAD risk factors and plasma lipoprotein subclasses and may reduce risk for cardiovascular events. Improvements in lipoprotein subclasses are more evident in men compared to women.</p

    Development and validation of novel PCR primers for identification of plasmid-mediated colistin resistance (mcr) genes in various environmental settings

    Get PDF
    Antibiotic resistance is considered one of the biggest threats to public health and has become a major concern for governments and international organizations. Combating this problem starts with improving global surveillance of antibiotic resistance genes (ARGs) and applying standardized protocols, both in a clinical and environmental context, in agreement with the One Health approach. Exceptional efforts should be directed to controlling ARGs conferring resistance to Critically Important Antimicrobials (CIA). In this study, a systematic literature review to synthesize data on the identification of mcr genes using a PCR technique was performed. Additionally, a novel set of PCR primers for mcr-1 – mcr-9 genes detection was proposed. The developed primers were in silico and experimentally validated by comparison with mcr-specific PCR primers reported in the literature. This validation, besides being a proof-of-concept for primers’ usefulness, provided insight into the distribution of mcr genes in municipal wastewater, clay and river sediments, glacier moraine, manure, seagulls and auks feces and daphnids from four countries. This analysis proved that commonly used primers may deliver false results, and some mcr genes may be overlooked in tested samples. Newly-developed PCR primers turned out to be relevant for the screening of mcr genes in various environments.info:eu-repo/semantics/publishedVersio

    Marginal lands and fungi – linking the type of soil contamination with fungal community composition

    Get PDF
    Fungi can be found in almost all ecosystems. Some of them can even survive in harsh, anthropogenically transformed environments, such as post-industrial soils. In order to verify how the soil fungal diversity may be changed by pollution, two soil samples from each of the 28 post-industrial sites were collected. Each soil sample was characterized in terms of concentration of heavy metals and petroleum derivatives. To identify soil fungal communities, fungal internal transcribed spacer 2 (ITS2) amplicon was sequenced for each sample using Illumina MiSeq platform. There were significant differences in the community structure and taxonomic diversity among the analysed samples. The highest taxon richness and evenness were observed in the non-polluted sites, and lower numbers of taxa were identified in multi-polluted soils. The presence of monocyclic aromatic hydrocarbons, gasoline and mineral oil was determined as the factors driving the differences in the mycobiome. Furthermore, in the culture-based selection experiment, two main groups of fungi growing on polluted media were identified - generalists able to live in the presence of pollution, and specialists adapted to the usage of BTEX as a sole source of energy. Our selection experiment proved that it is long-term soil contamination that shapes the community, rather than temporary addition of pollutant

    Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica)

    Get PDF
    The presence of heavy metals in Antarctica is an emerging issue, especially as (bio)weathering of metal-containing minerals occurs and human influence is more and more visible in this region. Chemical analysis of three soil samples collected from the remote regions of King George Island (Antarctica) revealed the presence of heavy metals (mainly copper, mercury, and zinc) at relatively high concentrations. Physiological characterization of over 200 heavy metal-resistant, psychrotolerant bacterial strains isolated from the Antarctic soil samples was performed. This enabled an insight into the heavy metal resistome of these cultivable bacteria and revealed the prevalence of co-resistance phenotypes. All bacteria identified in this study were screened for the presence of selected heavy metal-resistance genes, which resulted in identification of arsB (25), copA (3), czcA (33), and merA (26) genes in 62 strains. Comparative analysis of their nucleotide sequences provided an insight into the diversity of heavy metal-resistance genes in Antarctic bacteria

    Short term effects of a low-carbohydrate diet in overweight and obese subjects with low HDL-C levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate short-term effects of a low-carbohydrate diet in overweight and obese subjects with low HDL-C levels.</p> <p>Methods</p> <p>Overweight (BMI between 25-30 kg/m<sup>2</sup>) or obese (BMI over 30 kg/m<sup>2</sup>) subjects with low HDL-C levels (men with HDL-C <1.03, women <1.29 mmol/l) were invited to the study. A 1400 kcal 75-gram carbohydrate (CHO) diet was given to women and an 1800 kcal 100-gram CHO diet was given to men for four weeks. The distribution of daily energy of the prescribed diet was 21-22% from CHO, 26-29% from protein and 49-53% from fat. Subjects completed a three-day dietary intake record before each visit. Anthropometric indices, body fat ratio, blood lipids, glucose and insulin were measured. Baseline and week-four results were compared with a Wilcoxon signed ranks test.</p> <p>Results</p> <p>Twenty-five women and 18 men participated. Basal median LDL-C level of men was 3.11 and basal median LDL-C level of women was 3.00 mmol/l. After four weeks of a low-carbohydrate diet, the median energy intake decreased from 1901 to 1307 kcal/day, daily energy from carbohydrate from 55% to 33%, body weight from 87.7 to 83.0 kg and HDL-C increased from 0.83 to 0.96 mmol/l in men (p < 0.002, for all). After four weeks of a low-carbohydrate diet, the median energy intake tended to decrease (from 1463 to 1243 kcal, p = 0.052), daily energy from carbohydrate decreased from 53% to 30% (p < 0.001) and body weight decreased from 73.2 to 70.8 kg (p < 0.001) in women, but HDL-C did not significantly change (from 1.03 to 1.01 mmol/l, p = 0.165). There were significant decreases in body mass index, waist circumference, body fat ratio, systolic blood pressure, total cholesterol, triglyceride and insulin levels in all subjects.</p> <p>Conclusions</p> <p>HDL-C levels increased significantly with energy restriction, carbohydrate restriction and weight loss in men. HDL-C levels didn't change in women in whom there was no significant energy restriction but a significant carbohydrate restriction and a relatively small but significant weight loss. Our results suggest that both energy and carbohydrate restriction should be considered in overweight and obese subjects with low HDL-C levels, especially when LDL-C levels are not elevated.</p
    • …
    corecore