369 research outputs found

    Accelerating the Deactivation of \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Newport and \u3cem\u3eEscherichia coli\u3c/em\u3e O157:H7 in Dairy Manure by Modifying pH or Temperature

    Get PDF
    To assess methods for control of disease-causing bacteria in animal manures prior to field application, we manipulated the temperature or adjusted pH of dairy manure to high (3.5 to 5) or low (10 to 12) values with aluminum sulfate or hydrated lime, and inoculated the manure with Salmonella enterica serovar Newport or Escherichia coli O157:H7, then incubated the manure at ambient temperature. At pH 4.2, S. Newport was eliminated within 6 days; however at pH \u3e4.2 S. Newport was suppressed only temporarily and recovered to concentrations near the unamended controls. pH required to eliminate E. coli O157:H7 was 4.5. Both pathogens were killed by pH 11.0. The pathogens were eliminated within 2 weeks when inoculated manure was incubated at 37°C, whereas at 22°C and 4°C, the organisms persisted for much longer periods. S. Newport survived for over 300 days at 4°C, which has implications for manure spreading in colder seasons

    Combining Synchrotron X-ray Diffraction, Mechanistic Modeling, and Machine Learning for In Situ Subsurface Temperature Quantification during Laser Melting

    Full text link
    Laser melting, such as that encountered during additive manufacturing (AM), produces extreme gradients of temperature in both space and time, which in turn influence microstructural development in the material. Qualification and model validation of the process itself and resulting material produced necessitates the ability to characterize these temperature fields. However, well-established means to directly probe material temperature below the surface of an alloy while it is being processed are limited. To address this gap in characterization capabilities, we present a novel means to extract subsurface temperature distribution metrics, with uncertainty, from in situ synchrotron X-ray diffraction measurements to provide quantitative temperature evolution during laser melting. Temperature distribution metrics are determined using Gaussian Process Regression supervised machine learning surrogate models trained with a combination of mechanistic modeling (heat transfer and fluid flow) and X-ray diffraction simulation. Trained surrogate model uncertainties are found to range from 5% to 15% depending on the metric and current temperature. The surrogate models are then applied to experimental data to extract temperature metrics from an Inconel 625 nickel superalloy wall specimen during laser melting. Maximum temperatures of the solid phase in the diffraction volume through melting and cooling are found to reach the solidus temperature as expected, with mean and minimum temperatures found to be several hundred degrees less. The extracted temperature metrics near melting are determined to be more accurate due to the lower relative levels of mechanical elastic strains. However, uncertainties for temperature metrics during cooling are increased due to the effects of thermomechanical stress

    A cluster randomized controlled trial of a modified vaccination clinical reminder for primary care providers

    Get PDF
    Objective: Adult vaccination rates in the United States fall short of national goals, and rates are particularly low for Black Americans. We tested a provider-focused vaccination uptake intervention: a modified electronic health record clinical reminder that bundled together three adult vaccination reminders, presented patient vaccination history, and included talking points for providers to address vaccine hesitancy. Method: Primary care teams at the Atlanta Veterans Affairs Medical Center, who saw 28,941 patients during this period, were randomly assigned to receive either the modified clinical reminder (N = 44 teams) or the status quo (N = 40 teams). Results: Uptake of influenza and other adult vaccinations was 1.6 percentage points higher in the intervention group, which was not statistically significant (CI = [-1.3, 4.4], p = 0.28). The intervention had similar effects on Black and White patients and did not reduce the disparity in vaccination rates between these groups. Conclusion: Provider-focused interventions are a promising way to address vaccine hesitancy, but they may need to be more intensive than a modified clinical reminder to have appreciable effects on vaccination uptake

    Small intestinal mucosal cells in piglets fed with probiotic and zinc: a qualitative and quantitative microanatomical study

    Get PDF
    Background: Probiotics and zinc are commonly used and beneficial in pig production. This work aimed to assess the effects of probiotic and zinc on the mucosal cells of the small intestine in respect to digestive capacity and immunity in pre- and post-weaned piglets.Materials and methods: Eighteen Large White Yorkshire piglets were divided equally into control and treatment groups. The piglets were maintained in standard management conditions and were weaned at 28 days of age. The treatment group of piglets fed a mixture of probiotics orally at 1.25 × 109 CFU/day and zinc at 2000 ppm/day from birth to 10 days of age. At three different age-groups viz. day 20 (pre-weaning) and, day 30 and day 60 (post-weaning), the animals were sacrificed. For histomorphology, the tissue samples were processed and stained with Mayer’s haematoxylin and eosin for routine study, combined periodic acid-Schiff-Alcian blue for mucopolysaccharides and Masson-Hamperl argentaffin technique for argentaffin cells. The stained slides were observed under the microscope. The samples were processed as per the standard procedure for scanning and transmission electron microscopy. The statistical analysis of the data using the appropriate statistical tests was also conducted.Results: The mucosal epithelium of villi and crypts were lined by enterocytes, goblet cells, argentaffin cells, microfold (M-cell) cells, tuft cells and intraepithelial lymphocytes. The multipotent stem cells were located at the crypt base. The length of the enterocyte microvilli was significantly longer (p < 0.05) in the treatment group of piglets. The number of different types of goblet cells and argentaffin cells was more in treated piglets irrespective of segments of intestine and age. The intraepithelial lymphocytes were located in apical, nuclear and basal positions in the lining epithelium of both villus tip and base with their significant increase in the treatment group of piglets. The transmission electron microscopy revealed the frequent occurrence of tuft cells in the lining mucosa of the small intestine in treated piglets.Conclusions: Dietary supplementation of probiotic and zinc induced the number of different mucosal cells of villi and crypts in the small intestine that might suggest the greater absorptive capacity of nutrients and effective immunity in critical pre and post-weaned piglets

    On key technologies for realising digital twins for structural dynamics applications

    Get PDF
    The term digital twin has gained increasing popularity over the last few years. The concept, loosely based on a virtual model framework that can replicate a particular system for contexts of interest over time, will require the development and integration of several key technologies in order to be fully realised. This paper, focusing on vibration-related problems in mechanical systems, discusses these key technologies as the building blocks of a digital twin. The example of a simulation digital twin that can be used for asset management is then considered. After briefly discussing the building blocks required, the process of data-augmented modelling is selected for detailed investigation. This concept is one of the defining characteristics of the digital twin idea, and using a simple numerical example, it is shown how augmenting a model with data can be used to compensate for the inherent model discrepancy. Finally the implications of this type of data augmentation for future digital twin technology is discussed

    Disfluency in dialogue:an intentional signal from the speaker?

    Get PDF
    Disfluency is a characteristic feature of spontaneous human speech, commonly seen as a consequence of problems with production. However, the question remains open as to why speakers are disfluent: Is it a mechanical by-product of planning difficulty, or do speakers use disfluency in dialogue to manage listeners' expectations? To address this question, we present two experiments investigating the production of disfluency in monologue and dialogue situations. Dialogue affected the linguistic choices made by participants, who aligned on referring expressions by choosing less frequent names for ambiguous images where those names had previously been mentioned. However, participants were no more disfluent in dialogue than in monologue situations, and the distribution of types of disfluency used remained constant. Our evidence rules out at least a straightforward interpretation of the view that disfluencies are an intentional signal in dialogue. © 2012 Psychonomic Society, Inc

    Bacteriophages to control Shiga toxin-producing E. coli safety and regulatory challenges

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are usually found on food products due to contamination from the fecal origin, as their main environmental reservoir is considered to be the gut of ruminants. While this pathogen is far from the incidence of other well-known foodborne bacteria, the severity of STEC infections in humans has triggered global concerns as far as its incidence and control are concerned. Major control strategies for foodborne pathogens in food-related settings usually involve traditional sterilization/disinfection techniques. However, there is an increasing need for the development of further strategies to enhance the antimicrobial outcome, either on food-contact surfaces or directly in food matrices. Phages are considered to be a good alternative to control foodborne pathogens, with some phage-based products already cleared by the Food and Drug Administration (FDA) to be used in the food industry. In European countries, phage-based food decontaminants have already been used. Nevertheless, its broad use in the European Union is not yet possible due to the lack of specific guidelines for the approval of these products. Furthermore, some safety concerns remain to be addressed so that the regulatory requirements can be met. In this review, we present an overview of the main virulence factors of STEC and introduce phages as promising biocontrol agents for STEC control. We further present the regulatory constraints on the approval of phages for food applications and discuss safety concerns that are still impairing their use.The authors thank the Portuguese Foundation for Scienceand Technology (FCT) through the strategic funding of UID/BIO/04469/2019 unit, and the project PhageSTEC [PTDC/CVT-CVT/29628/2017], under the scope of COMPETE 2020 [POCI-01-0145-FEDER-029628]. The author GP acknowledges theFCT grant [SFRH/BD/117365/2016].info:eu-repo/semantics/publishedVersio

    Bacteria establish an aqueous living space in plants crucial for virulence

    Get PDF
    High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere–bacterial interactions
    • …
    corecore