2,218 research outputs found

    Predicting Alzheimer's risk: why and how?

    Get PDF
    Because the pathologic processes that underlie Alzheimer's disease (AD) appear to start 10 to 20 years before symptoms develop, there is currently intense interest in developing techniques to accurately predict which individuals are most likely to become symptomatic. Several AD risk prediction strategies - including identification of biomarkers and neuroimaging techniques and development of risk indices that combine traditional and non-traditional risk factors - are being explored. Most AD risk prediction strategies developed to date have had moderate prognostic accuracy but are limited by two key issues. First, they do not explicitly model mortality along with AD risk and, therefore, do not differentiate individuals who are likely to develop symptomatic AD prior to death from those who are likely to die of other causes. This is critically important so that any preventive treatments can be targeted to maximize the potential benefit and minimize the potential harm. Second, AD risk prediction strategies developed to date have not explored the full range of predictive variables (biomarkers, imaging, and traditional and non-traditional risk factors) over the full preclinical period (10 to 20 years). Sophisticated modeling techniques such as hidden Markov models may enable the development of a more comprehensive AD risk prediction algorithm by combining data from multiple cohorts. As the field moves forward, it will be critically important to develop techniques that simultaneously model the risk of mortality as well as the risk of AD over the full preclinical spectrum and to consider the potential harm as well as the benefit of identifying and treating high-risk older patients

    A literature review on community-acquired methicillin-resistant Staphylococcus aureus in the United States: Clinical information for primary care nurse practitioners

    Full text link
    Purpose: To analyze the state of the science of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in the United States to support the integration of current knowledge for primary care nurse practitioners’ (PCNP) practice. Data sources: Published research limited to U.S. studies in MEDLINE, CINAHL, and Cochrane Review from 1950 to the week of September 4, 2008. Investigations were identified through electronic search engines and databases. Manual searches were done of hard copy references in journal articles. Citations and reference lists for English language research studies of CA-MRSA in the United States were reviewed to identify additional research that fit evaluation criteria for this analysis. Conclusions: Until the late 1990s, healthcare-associated MRSA (HA-MRSA) was the predominant cause of serious infections. Recently, CA-MRSA has caused infections in previously healthy nonhospitalized people. Major demographic and epidemiological differences exist between the two types of resistant bacteria; the emergence of CA-MRSA suggests new implications for primary care. Implications for practice: PCNPs will undoubtedly treat MRSA infections and need a comprehensive understanding of the pathogenicity, diagnosis, and management of CA-MRSA to ensure expedient and appropriate treatment. This will help to prevent invasive disease as a result of improperly treated infections.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79099/1/j.1745-7599.2010.00571.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79099/2/JAAN_571_sm_Tables1.pd

    Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice

    Get PDF
    AbstractDNA ligase IV is the most recently identified member of a family of enzymes joining DNA strand breaks in mammalian cell nuclei [1,2]. The enzyme occurs in a complex with the XRCC4 gene product [3], an interaction mediated via its unique carboxyl terminus [4,5]. Cells lacking XRCC4 are hypersensitive to ionising radiation and defective in V(D)J recombination [3,6], implicating DNA ligase IV in the pathway of nonhomologous end-joining (NHEJ) of DNA double-strand breaks mediated by XRCC4, the Ku70/80 heterodimer and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in mammalian cells (reviewed in [7]). The phenotype of a null mutant of the Saccharomyces cerevisiae DNA ligase IV homologue indicates that the enzyme is non-essential and functions in yeast NHEJ [8–10]. Unlike other mammalian DNA ligases for which cDNAs have been characterised, DNA ligase IV is encoded by an intronless gene (LIG4). Here, we show that targeted disruption of LIG4 in the mouse leads to lethality associated with extensive apoptotic cell death in the embryonic central nervous system. Thus, unlike Ku70/80 and DNA-PKcs [11–14], DNA ligase IV has an essential function in early mammalian development

    Development and Validation of eRADAR: A Tool Using EHR Data to Detect Unrecognized Dementia.

    Get PDF
    ObjectivesEarly recognition of dementia would allow patients and their families to receive care earlier in the disease process, potentially improving care management and patient outcomes, yet nearly half of patients with dementia are undiagnosed. Our aim was to develop and validate an electronic health record (EHR)-based tool to help detect patients with unrecognized dementia (EHR Risk of Alzheimer's and Dementia Assessment Rule [eRADAR]).DesignRetrospective cohort study.SettingKaiser Permanente Washington (KPWA), an integrated healthcare delivery system.ParticipantsA total of 16 665 visits among 4330 participants in the Adult Changes in Thought (ACT) study, who undergo a comprehensive process to detect and diagnose dementia every 2 years and have linked KPWA EHR data, divided into development (70%) and validation (30%) samples.MeasurementsEHR predictors included demographics, medical diagnoses, vital signs, healthcare utilization, and medications within the previous 2 years. Unrecognized dementia was defined as detection in ACT before documentation in the KPWA EHR (ie, lack of dementia or memory loss diagnosis codes or dementia medication fills).ResultsOverall, 1015 ACT visits resulted in a diagnosis of incident dementia, of which 498 (49%) were unrecognized in the KPWA EHR. The final 31-predictor model included markers of dementia-related symptoms (eg, psychosis diagnoses, antidepressant fills), healthcare utilization pattern (eg, emergency department visits), and dementia risk factors (eg, cerebrovascular disease, diabetes). Discrimination was good in the development (C statistic = .78; 95% confidence interval [CI] = .76-.81) and validation (C statistic = .81; 95% CI = .78-.84) samples, and calibration was good based on plots of predicted vs observed risk. If patients with scores in the top 5% were flagged for additional evaluation, we estimate that 1 in 6 would have dementia.ConclusionThe eRADAR tool uses existing EHR data to detect patients with good accuracy who may have unrecognized dementia. J Am Geriatr Soc 68:103-111, 2019

    Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease

    Get PDF
    Abstract The major DNA-specific 3 -5 exonuclease of mammalian cells is TREX1 (3 repair exonuclease 1; previously called DNase III). The human enzyme is encoded by a single exon and, like many 3 exonucleases, exists as a homodimer. TREX1 degrades ssDNA (single-stranded DNA) more efficiently than dsDNA (double-stranded DNA), and its catalytic properties are similar to those of Escherichia coli exonuclease X. However, TREX1 is only found in mammals and has an extended C-terminal domain containing a leucine-rich sequence required for its association with the endoplasmic reticulum. In normal S-phase and also in response to genotoxic stress, TREX1 at least partly redistributes to the cell nucleus. In a collaborative project, we have demonstrated TREX1 enzyme deficiency in Aicardi-Goutières syndrome. Subsequently, we have shown that AGS1 cells exhibit chronic ATM (ataxia telangiectasia mutated)-dependent checkpoint activation, and these TREX1-deficient cells accumulate ssDNA fragments of a distinct size generated during DNA replication. Other groups have shown that the syndromes of familial chilblain lupus as well as systemic lupus erythematosus, and the distinct neurovascular disorder retinal vasculopathy with cerebral leukodystrophy, can be caused by dominant mutations at different sites within the TREX1 gene

    An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity

    Get PDF
    Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytcha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and sockeye salmon (Oncorhynchus nerka)] compared to the northern pike (Esox lucius), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λmax values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.publishedVersio
    • …
    corecore