4 research outputs found

    A phase II study on the role of gemcitabine plus romidepsin (GEMRO regimen) in the treatment of relapsed/refractory peripheral T-cell lymphoma patients

    Get PDF
    Background: There is no consensus regarding optimal treatment for peripheral T-cell lymphomas (PTCL), especially in relapsed or refractory cases, which have very poor prognosis and a dismal outcome, with 5-year overall survival of 30 %. Methods: A multicenter prospective phase II trial was conducted to investigate the role of the combination of gemcitabine plus romidepsin (GEMRO regimen) in relapsed/refractory PTCL, looking for a potential synergistic effect of the two drugs. GEMRO regimen contemplates an induction with romidepsin plus gemcitabine for six 28-day cycles followed by maintenance with romidepsin for patients in at least partial remission. The primary endpoint was the overall response rate (ORR); secondary endpoints were survival, duration of response, and safety of the regimen. Results: The ORR was 30 % (6/20) with 15 % (3) complete response (CR) rate. Two-year overall survival was 50 % and progression-free survival 11.2 %. Grade >= 3 adverse events were represented by thrombocytopenia (60 %), neutropenia (50 %), and anemia (20 %). Two patients are still in CR with median response duration of 18 months. The majority of non-hematological toxicities were mild and transient. No treatment-related death occurred and no toxicity led to treatment interruption. Conclusions: GEMRO combination regimen shows efficacy data similar to those of single-agent romidepsin with additional hematologic toxicities. Synergy observed in preclinical phase did not turn into ability to improve clinical outcomes

    How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems?

    No full text
    Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, “Biology in Space and Analogue Environments”, focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: “How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?” The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed

    How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms?

    Get PDF
    Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap “Biology in Space and Analogue Environments” focusing on “How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?” The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed

    How do gravity alterations affect animal and human systems at a cellular/tissue level?

    Get PDF
    The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: “How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?” This is one of the five major scientific issues of the ESA roadmap “Biology in Space and Analogue Environments”. Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects
    corecore