22 research outputs found

    Synthesis of phosphonic acid ligands for nanocrystal surface functionalization and solution processed memristors

    Get PDF
    Here, we synthesized 2-ethylhexyl, 2-hexyldecyl, 2-[2-(2-methoxyethoxy)ethoxy]ethyl, oleyl, and n-octadecyl phosphonic acid and used them to functionalize CdSe and HfO2 nanocrystals. In contrast to branched carboxylic acids, postsynthetic surface functionalization of CdSe and HfO2 nanocrystals was readily achieved with branched phosphonic acids. Phosphonic acid capped HfO2 nanocrystals were subsequently evaluated as memristors using conductive atomic force microscopy. We found that 2-ethylhexyl phosphonic acid is a superior ligand, combining a high colloidal stability with a compact ligand shell that results in a record-low operating voltage that is promising for application in flexible electronics

    A brighter future for medical imaging : designing nanocrystals for in vivo applications

    No full text
    Borstkanker bij vrouwen is recent de meest gediagnosticeerde vorm van kanker geworden, met meer dan 2 miljoen nieuwe gevallen per jaar. Van alle behandelingsmethoden die beschikbaar zijn bij borstkanker blijft chirurgie een van de belangrijkste voor patiënten. Tijdens de chirurgische behandeling wordt de primaire tumor verwijderd samen met de zogenaamde sentinel lymfeklieren (SLNs), de lymfeklieren die de grootste kans hebben om uitzaaiingen te bevatten. De huidige klinische standaard om SLNs te identificeren maakt gebruik van een combinatie van technetium-99m gelabelde nanocolloïden en blauwe kleurstoffen. Deze werkwijze heeft echter nadelen zoals inflexibele procedures, blootstelling aan radioactiviteit voor zowel de patiënt als het chirurgisch team, allergische bijwerkingen en langdurige huidverkleuring. Deze doctoraatsthesis heeft als hoofddoel om een verbeterde werkwijze te bieden voor de detectie van SLNs gebruik makend van computertomografie (een beeldvormingstechniek gebaseerd op X-stralen) en nabij-infrarood fluorescentie, mogelijk gemaakt door duale-modaliteit hafnium oxide nanokristallen. Als tweede doel evalueert het ook het potentieel gebruik van hafnium oxide nanokristallen voor contrastverhoogde vasculaire computertomografie beeldvorming. Binnen deze doctoraatsthesis worden er eerst fundamentele inzichten vergaard omtrent de oppervlaktechemie van deze nanokristallen in waterige omgevingen, deze inzichten worden dan toegepast om de nanokristallen te stabiliseren in fysiologische condities. In de volgende hoofdstukken wordt het geoptimaliseerd geneesmiddel getest in verschillende in vivo studies op muizen

    Mapping out the aqueous surface chemistry of metal oxide nanocrystals; carboxylate, phosphonate and catecholate ligands

    No full text
    Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids and catechols to metal oxide nanocrystals in polar media. Using Nuclear Magnetic Resonance spectroscopy and Dynamic Light Scattering, we map out the pH-dependent binding affinity of the ligands towards hafnium oxide nanocrystals (an NMR compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 – 6. Phosphonic acids on the other hand provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH < 8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). While dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate buffered saline, the tightly bound nitrocatechols provide long term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application

    Mapping out the aqueous surface chemistry of metal oxide nanocrystals : carboxylate, phosphonate, and catecholate ligands

    Get PDF
    Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6–10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application

    The binding affinity of monoalkyl phosphinic acid ligands towards nanocrystal surfaces

    No full text
    We recently introduced monoalkyl phosphinic acids as a ligand class for nanocrystal synthesis. Their metal salts have interesting reactivity differences with respect to metal carboxylates and phosphonates, and provide cleaner work-up compared to phosphonates. However, there is little known about the surface chemistry of nanocrystals with monoalkyl phosphinate ligands. Here, we probe the relative binding affinity of monoalkyl phosphinate ligands with respect to other X-type ligands. We perform competitive ligand exchange reactions with carboxylate and phosphonate ligands at the surface of HfO2, CdSe, and ZnS nanocrystals. We monitor the ligand shell composition by solution 1H and 31P NMR spectroscopy. Using a monoalkyl phosphinic acid with an ether functionality, we gain an additional NMR signature, apart from the typical alkene resonance in oleic acid and oleylphosphonic acid. We find that carboxylate ligands are easily exchanged upon exposure to monoalkyl phosphinic acids, whereas an equilibrium is reached between monoalkyl phosphinates and phosphonates, slightly in the favour of phosphonate (K = 2). Phosphinic acids have thus an intermediate binding affinity between carboxylic acids and phosphonic acids for all nanocrystals studied. These results enable the sophisticated use of monoalkyl phosphinic acids for nanocrystal synthesis and for post-synthetic surface engineering

    Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands

    No full text
    Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6–10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application

    Mapping out the aqueous surface chemistry of metal oxide nanocrystals; carboxylate, phosphonate and catecholate ligands

    No full text
    Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids and catechols to metal oxide nanocrystals in polar media. Here [1], we use Nuclear Magnetic Resonance spectroscopy and Dynamic Light Scattering to map out the pH-dependent binding affinity of the ligands towards hafnium oxide nanocrystals (an NMR compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 – 6. Phosphonic acids on the other hand provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH < 8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). While dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate buffered saline, the tightly bound nitrocatechols provide long term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application

    Synthesis of Phosphonic Acid Ligands for Nanocrystal Surface Functionalization and Solution Processed Memristors

    No full text
    Here we synthesize 2-ethylhexyl, 2-hexyldecyl, 2-[2-(2-methoxyethoxy)ethoxy]ethyl, oleyl and n-octadecyl phosphonic acid and use them to functionalize CdSe and HfO2 nanocrystals. In contrast to branched carboxylic acids, post-synthetic surface functionalization of CdSe and HfO2 nanocrystals is readily achieved with branched phosphonic acids. A simple flow coating process is used to deposit ribbons of individual phosphonic acid capped HfO2 nanocrystals, which are subsequently evaluated as a memristor using conductive atomic force microscopy (c-AFM). We find that 2-ethylhexyl phosphonic acid is a superior ligand, combining a high colloidal stability with a compact ligand shell that results in a record-low operating voltage that is promising for application in flexible electronics. </p
    corecore