3 research outputs found

    hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV)-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells.</p> <p>Methods</p> <p>Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG) and quantitative methylation specific PCR (qMSP) analysis of two regions flanking the hTERT core promoter.</p> <p>Results</p> <p>We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity.</p> <p>By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls.</p> <p>Conclusions</p> <p>Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA methylation at these repressive regions may provide an attractive biomarker for early detection of cervical cancer.</p

    Methylation status of the E2 binding sites of HPV16 in cervical lesions determined with the Luminex® xMAP™ system

    Get PDF
    AbstractCervical carcinogenesis is driven by deregulated E6/E7 expression in dividing cells. A potential deregulating mechanism is methylation of E2 binding sites in the viral long control region, thereby prohibiting HPVE2-mediated transcription regulation. Here the frequency of HPV16E2BS methylation in cervical lesions (SCC, n=29; CIN3, n=17) and scrapes (controls, n=17; CIN3, n=21) was investigated. Three E2BSs were amplified using methylation independent PCR followed by specific detection of methylated CpGs using the Luminex® xMAP™ system. The frequency of E2BS1, E2BS3 and E2BS4 methylation was significantly higher in SCC compared to CIN3, i.e. 93% vs. 21% (p<0.01), 90% vs. 47% (p<0.01) and 69% vs. 5% (p<0.01), respectively and ranged from 6 to 15% in controls. In scrapings of women with CIN3 methylation ranged from 24 to 33%.In conclusion, we showed that the MIP–Luminex system is a highly sensitive method for methylation analysis. HPV16 E2BSs methylation appeared highly frequent in SCC, with particularly E2BS3 methylation occurring proportional to severity of cervical disease
    corecore