71 research outputs found

    Orbital Optimization in the Density Matrix Renormalization Group, with applications to polyenes and \beta-carotene

    Get PDF
    In previous work we have shown that the Density Matrix Renormalization Group (DMRG) enables near-exact calculations in active spaces much larger than are possible with traditional Complete Active Space algorithms. Here, we implement orbital optimisation with the Density Matrix Renormalization Group to further allow the self-consistent improvement of the active orbitals, as is done in the Complete Active Space Self-Consistent Field (CASSCF) method. We use our resulting DMRGCASSCF method to study the low-lying excited states of the all-trans polyenes up to C24H26 as well as \beta-carotene, correlating with near-exact accuracy the optimised complete \pi-valence space with up to 24 active electrons and orbitals, and analyse our results in the light of the recent discovery from Resonance Raman experiments of new optically dark states in the spectrum.Comment: 16 pages, 8 figure

    Diffusive and Superdiffusive Motion of sorbates in Carbon nanotubes

    Full text link
    Molecular dynamics simulations of sorbates of different sizes confined to the interior of carbon nanotubes are reported. The mean squared displacement shows gradual change from diffusive for small sorbates to superdiffusive for intermediate sized-sorbates to ballistic for sizes comparable to the channel diameter. We show that this crossover behaviour can be understood on the basis of a gradual decrease of the x-y component of the force with the levitation parameter. The analysis can also help to rationalize some recently published results.Comment: 3 pages, 3 figure

    Impact of Lean and Sustainability Oriented Innovation on Sustainability Performance of Small and Medium Sized Enterprises: A Data Envelopment Analysis-based framework

    Get PDF
    Lean and Sustainability Oriented Innovation both enhance competitiveness of small and medium enterprises (SMEs) in a sustainable way. Lean is efficiency focused, whereas Sustainability Oriented Innovation emphasizes on responsiveness. Although lean and sustainability oriented innovation have been separately researched, there is a gap in knowledge on the combined effect of lean and sustainability oriented innovation (SOI) on SMEs Supply Chain sustainability. SMEs have limited resources and face numerous competition. Therefore, their supply chain sustainability can only be achieved through most appropriate trade-off between economic, environment and social aspects of business. The purpose of this paper is to understand the combined effect of sustainability oriented innovation and lean practices, on supply chain sustainability performance of SMEs. The study uses a Data Envelopment Analysis (DEA) based framework and applies this to a group of SMEs within the Eastern part of India. Lean and sustainability oriented innovation are considered as input criteria, and economic, operational, environmental and social aspects are considered as output criteria of the proposed framework. DEA segregates inefficient SMEs and suggests at least a SME to benchmark. Subsequently, the study undertakes qualitative approach to suggest improvement measures for the inefficient SMEs. The results reveal that combined lean and SOI helps achieve SMEs' supply chain sustainability. The findings are useful for policy makers and Individual SMEs' owners and managers to undertake measures for improving sustainability. Theoretically this research contributes a DEA-based framework to study the effect of combined lean and SOI on sustainability that helps improving SMEs’ sustainability performance

    The endocannabinoid/cannabinoid receptor 2 system protects against cisplatin-induced hearing loss

    Get PDF
    Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis. In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss. In a knock-in mouse model expressing the CB2R tagged with green fluorescent protein, we show distribution of CB2R in the organ of Corti, stria vascularis, spiral ligament and spiral ganglion cells. A similar distribution of CB2R was observed in the rat cochlea using a polyclonal antibody against CB2R. Trans-tympanic administration of (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), a selective agonist of the CB2R, protected against cisplatin-induced hearing loss which was reversed by blockade of this receptor with 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630), an antagonist of CB2R. JWH015 also reduced the loss of outer hair cells (OHCs) in the organ of Corti, loss of inner hair cell (IHC) ribbon synapses and loss of Na+/K+-ATPase immunoreactivity in the stria vascularis. Administration of AM630 alone produced significant hearing loss (measured by auditory brainstem responses) which was not associated with loss of OHCs, but led to reductions in the levels of IHC ribbon synapses and strial Na+/K+-ATPase immunoreactivity. Furthermore, knock-down of CB2R by trans-tympanic administration of siRNA sensitized the cochlea to cisplatin-induced hearing loss at the low and middle frequencies. Hearing loss induced by cisplatin and AM630 in the rat was associated with increased expression of genes for oxidative stress and inflammatory proteins in the rat cochlea. In vitro studies indicate that JWH015 did not alter cisplatin-induced killing of cancer cells suggesting this agent could be safely used during cisplatin chemotherapy. These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.</p

    Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity

    Get PDF
    AbstractCisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.</jats:p

    An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry

    Get PDF
    The Density Matrix Renormalisation Group (DMRG) is an electronic structure method that has recently been applied to ab-initio quantum chemistry. Even at this early stage, it has enabled the solution of many problems that would previously have been intractable with any other method, in particular, multireference problems with very large active spaces. Historically, the DMRG was not originally formulated from a wavefunction perspective, but rather in a Renormalisation Group (RG) language. However, it is now realised that a wavefunction view of the DMRG provides a more convenient, and in some cases more powerful, paradigm. Here we provide an expository introduction to the DMRG ansatz in the context of quantum chemistry.Comment: 17 pages, 3 figure

    A study of cumulant approximations to n-electron valence multireference perturbation theory

    Get PDF
    We investigate the possibility of reducing the complexity of multireference perturbation theory through cumulant based approximations to the high-order density matrices that appear in such theories. Our test cases show that while the cumulant approximated forms are degraded in accuracy relative to the parent theory and exhibit intruder state problems that must be carefully handled, they may provide a route to a simple estimation of dynamic correlation when the parent perturbation theory is infeasible. Nonetheless, further work is clearly needed on better approximations to the denominators in the perturbation theory
    corecore