3,118 research outputs found
Multiobjective synchronization of coupled systems
Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications
Performance of novel enamel-conditioning calcium-phosphate pastes for orthodontic bonding : an in vitro study
This study aimed to develop remineralizing calcium-phosphate (CaP) etchant pastes for enamel conditioning before bracket bonding and evaluate the bonding performance, failure pattern, and enamel surface integrity post bracket debonding in comparison wit
Functional Profiling Reveals Altered Metabolic Activity in Diversâ Oral Microbiota During Commercial Heliox Saturation Diving
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the diversâ health and fitness.Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving.Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the diversâ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as p
Effective battery charging system using step voltage and step duty size-based MPPT controller for solar PV system
\ua9 2023 The Author(s). Solar energy is an excellent source of renewable energy, despite its intermittent nature that can pose a challenge. To meet load demand, a converter is required to integrate the system. The converter acts based on control signals from the controller, which is trained according to the end demand and availability of Sun Irradiance. This paper utilizes the Incremental Conductance (IC) and Perturb and Observe (P&O) algorithms, which are widely accepted in the industry and easy to implement. This study aims to design and compare a Step Voltage (SV) controller and a Step-Duty (SD) Maximum Point Tracking (MPPT) IC controller-based DC to DC boost converter. The paper compares the performance of SV and SD controller-based DC to DC boost converters under different environmental conditions, evaluates the system\u27s effectiveness by comparing the oscillations in load power for both conditions and discusses the impact of battery charging on the Load. The system performance is tested using MATLAB Simulink/coding, considering the Indian solar radiation intensity (SRI) scenario and temperature variations. Overall, this study provides a comprehensive analysis of the performance of the proposed system, which can contribute to the development and optimization of solar energy systems in various applications. From the comparative analysis of IC SD, SV and P&O SD, SV it is observed the performance of IC SD is superior. The impact of battery charging using IC SD controller on the load and MPPT point is also discussed
Empirical Investigations of Reference Point Based Methods When Facing a Massively Large Number of Objectives: First Results
EMO 2017: 9th International Conference on Evolutionary Multi-Criterion Optimization, 19-22 March 2017, MĂźnster, GermanyThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Multi-objective optimization with more than three objectives has become one of the most active topics in evolutionary multi-objective optimization (EMO). However, most existing studies limit their experiments up to 15 or 20 objectives, although they claimed to be capable of handling as many objectives as possible. To broaden the insights in the behavior of EMO methods when facing a massively large number of objectives, this paper presents some preliminary empirical investigations on several established scalable benchmark problems with 25, 50, 75 and 100 objectives. In particular, this paper focuses on the behavior of the currently pervasive reference point based EMO methods, although other methods can also be used. The experimental results demonstrate that the reference point based EMO method can be viable for problems with a massively large number of objectives, given an appropriate choice of the distance measure. In addition, sufficient population diversity should be given on each weight vector or a local niche, in order to provide enough selection pressure. To the best of our knowledge, this is the first time an EMO methodology has been considered to solve a massively large number of conflicting objectives.This work was partially supported by EPSRC (Grant No. EP/J017515/1
In vitro bond strengths post thermal and fatigue load cycling of sapphire brackets bonded with self-etch primer and evaluation of enamel damage
This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesive remnant index (ARI score), with scanning electron microscopy (SEM) evaluation of enamel condition. The control subgroups consistently exhibited significantly higher (p<0.05) SBS mean values (23.4-29.8 MPa) than the SEP subgroups (15.1-22.4 MPa) at both bracket debonding time points. However, the SEP subgroups yielded milder etch-patterns and attained SBS values above the minimum requirement range for clinical performance. In addition, the higher SBS of control subgroups was accompanied with higher ARI scores and enamel damage grades than SEP subgroups as confirmed by SEM. Thermocycling and fatigue significantly reduced the SBS of all subgroups, with a non-significant drop in the amount of adhesive residue or enamel damage. The use of SEP can be a suitable alternative to the conventional PA gel for sapphire bracket bonding as it maintains suitable bond strength and has the potential to produce both less remnant adhesive and enamel damage
Resistance of bonded premolars to four artificial ageing models post enamel conditioning with a novel calcium-phosphate paste
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phospho-ric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two ena-mel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from ?-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exposed to four artificial ageing models to examine the shear bond strength (SBS), adhesive rem-nant index (ARI score), with stereomicroscopic evaluation of enamel damage. Results: Metal and ceramic control subgroups yielded significantly higher (p ? 0.05) SBS (17.1-31.8 MPa) than the CaP subgroups (11.4-23.8 MPa) post all artificial ageing protocols, coupled with higher ARI scores and evidence of enamel damage. In contrast, the CaP subgroups survived all artificial ageing tests by maintaining adequate SBS for clinical performance, with the advantages of leaving unblemished enamel surface and bracket failures at the enamel-adhesive interface. Conclusions: Enamel conditioning with acidic CaP pastes attained adequate bond strengths with no or minimal adhesive residue and enamel damage, suggesting a suitable alternative to the conventional PA gel for orthodontic bonding
- âŚ