130 research outputs found

    \u3cem\u3eFresa y chocolate\u3c/em\u3e: A Subtle Critique of the Revolution in Crisis

    Get PDF
    This article uses Paulo Freire’s theories to illustrate Gutiérrez Alea’s attempts to continue a dynamic, Cuban revolution in light of what he depicts as a static revolution that has ceased to evolve. In fact, the film under study seems to present the achievements of Castro’s revolution as counter-revolutionary since the movement has suffered from bureaucratization, sloganism, and the banking model of education, which are all characteristics of an oppressive regime

    Partial or Complete Unloading of Skeletal Muscle Leads to Specific Alterations of Anabolic Signal Transduction

    Get PDF
    Consequences of disuse atrophy of skeletal muscle observed during spaceflight on astronaut health and performance are a focal point of space research. Decrements of both muscle mass and protein synthesis rates have been observed with exposure to varying muscle loading environments (1G \u3e partial loading \u3e 0G), and most of the reduced muscle mass can be attributed to diminished rates of synthesis. However, specific mechanisms behind unloading-dependent reductions of protein synthesis are not well defined. PURPOSE: To determine whether or not alterations of anabolic signal transduction was responsible for the changes previously observed in fractional synthesis rates with specific gravitational loading paradigms. METHODS: Female BALB/cByJ were normalized by bodyweight and assigned to normal cage ambulation (1G), partial weight bearing suspension titrated to approximately 33% bodyweight (G/3), partial weight bearing titrated to 16% bodyweight (G/6) and full unloading of hind limbs (0G) in specially designed cages. All mice were subjected to that loading environment for 21d prior to tissue harvest, and monitored daily. Immunoblotting of the gastrocnemius (n=23) was carried out to analyze alterations of anabolic signal transduction. Although numerous signaling intermediates were assessed, the focus of this abstract will be on ribosomal protein S6 kinase (p70-S6K). This important protein has served as a marker of protein synthesis signal transduction as well as the anabolic capacity in skeletal muscle. RESULTS: Regardless of loading paradigm, no differences were detected among groups for the activation of p70-S6K (as indicated by the phospho: total protein content). Total protein content, however, was ~27% lower than control in 0G and G/3 (P=0.008) with G/6 not being different from control (P\u3e0.05). CONCLUSION: In combination with previous data (unpublished observations), Partial gravitational fields at least partially rescues anabolic signaling, suggesting that a threshold level of stimulus is necessary to maintain anabolic capacity in muscle. These results may have important implications towards the development of strategies designed to counter the effects of partial/complete unloading on skeletal muscle based on how the anabolic capacity of muscle is affected

    Autophagy is Required for the Anabolic Response to Muscle Contraction

    Get PDF
    Exercise is a key stimulus in regulating the behavior and metabolism of skeletal muscle, with exercise inducing muscular growth through activation of the anabolic mechanistic target of rapamycin kinase (mTOR). Separately, there is mounting evidence that exercise increases autophagy (one of the main routes by which intracellular proteins are degraded) and that the autophagic process may indeed be required for adaptations to exercise training. PURPOSE: To investigate the effects of autophagy inhibition on mTOR signaling and cellular anabolism after muscular contraction. METHODS: Cultured L6 myotubes were to exposed to electrical pulse stimulation using a stimulator set to deliver bipolar pulses of 30V at 100 Hz for 200 ms every fifth second for 60 minutes. Subsequently, cells received either vehicle control, or 100 μM NSC-185058, an antagonist of the key autophagy protein ATG4B and known inhibitor of autophagy. All groups were also exposed to 4% deuterium oxide, a stable isotopic tracer for measurements of protein synthesis. 24 hours post “exercise” bout, cells were lysed in ice-cold Norris buffer, and prepared for Western immunoblot of protein expression, or determination of protein fractional synthesis rate (FSR) of the myofibrillar fraction via mass-spectrometry analysis. Non-stimulated cells receiving vehicle control treatment served as controls, with a one-way analysis of variance and Tukey’s post-hoc test used to test for any differences between groups. RESULTS: We found that phosphorylation of a key downstream target of mTOR, P70S6 kinase, was roughly seven times greater in cells subjected to EPS and vehicle control (710.3%) relative to control (p0.05). While there was a trend for EPS treatment to increase expression of ATG4B, along with a reduction of ATG4B content as a result of NSC-185058 treatment, this finding did not rise to the level of statistical significance. There were no differences in FSR between cells exposed to EPS; however, NSC-185058 treatment significantly reduced FSR in EPS treated cells relative to controls (0.8712 %/hr vs 1.193 %/hr). CONCLUSION: These findings present two conclusions: high-intensity EPS as an in vitro model of exercise elevates mTOR signaling through P70S6K 24 hours post exercise, and mTOR activation as a result of muscular contraction is reliant upon autophagy in skeletal muscle. Further work will be required to elucidate the dynamics of this relationship, and the interplay between skeletal muscle autophagy and anabolism

    Males, but Not Females, Demonstrate Mitochondrial Dysfunction in the C26 Model of Cancer Cachexia

    Get PDF
    Cancer cachexia is characterized by progressive muscle wasting that can lead to symptoms such as anemia, severe weight loss, and fatigue. These symptoms can lead to limitations in activities of daily living and can cause resistance to chemotherapy treatments in cancer patients. There are no current treatments available to treat cancer cachexia and a critical need remains to identify mechanisms of cancer cachexia. Recently, our group identified mitochondrial disfunction precedes muscle atrophy in males but not females in a model of lung cancer induced atrophy. However, it is unknown whether this finding is replicated when studying a different type of cancer. PURPOSE: This study set out to determine if mitochondrial respiration is impaired in the plantaris muscle in a well-established colon cancer model of cachexia. METHODS: The time-course study consisted of male and female mice in four groups per sex: An age-matched control (PBS), and three groups implanted with C26 tumors. Tumor growth for 10-15 days, 20 days, and 25 days. Tumors were implanted bilaterally into the hind flank for a total of 1X106 cells PBS (one-half per each hindflank). The plantaris was weighed for wet mass then teased into small fiber bundles and permeabilized for the quantification of mitochondrial function. Mitochondrial dysfunction was classified by a decrease in the respiratory control ratio (RCR), which is the ratio of state 3 (maximal ADP stimulated respiration) to state 4 (oligomycin-induced leak respiration). Male and Female data were analyzed separately using a one-way ANOVA. RESULTS: The tumor burden increased as the number of days increased. Male RCR showed a mean difference in RCR at the early timepoint (10-15 day, p=0.058) and demonstrated significantly lower RCR at the 20 day timepoint compared to PBS control (20d= 1.170± 0.094, PBS= 2.41 ± 0.13, p=0.031). Interestingly, RCR was not significantly different between male PBS and 25 days (1.864± 0.21, p=0.084). RCR in the plantaris from females was not different among any of the groups (p=0.401). CONCLUSION: Along with our previously published data in a lung cancer model, these data indicate that the mechanisms of muscle atrophy are sex dependent. Specifically, mitochondrial dysfunction appears to play an important role in cancer-induced atrophy in male, but not female, mice

    Female mice may have exacerbated catabolic signalling response compared to male mice during development and progression of disuse atrophy

    Get PDF
    Background: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). Methods: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). Results: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. Conclusions: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy

    Solar Occultation Satellite Data and Derived Meteorological Products: Sampling Issues and Comparisons with Aura MLS

    Get PDF
    Derived Meteorological Products (DMPs, including potential temperature (theta), potential vorticity, equivalent latitude (EqL), horizontal winds and tropopause locations) have been produced for the locations and times of measurements by several solar occultation (SO) instruments and the Aura Microwave Limb Sounder (MLS). DMPs are calculated from several meteorological analyses for the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer, Stratospheric Aerosol and Gas Experiment II and III, Halogen Occultation Experiment, and Polar Ozone and Aerosol Measurement II and III SO instruments and MLS. Time-series comparisons of MLS version 1.5 and SO data using DMPs show good qualitative agreement in time evolution of O3, N2O, H20, CO, HNO3, HCl and temperature; quantitative agreement is good in most cases. EqL-coordinate comparisons of MLS version 2.2 and SO data show good quantitative agreement throughout the stratosphere for most of these species, with significant biases for a few species in localized regions. Comparisons in EqL coordinates of MLS and SO data, and of SO data with geographically coincident MLS data provide insight into where and how sampling effects are important in interpretation of the sparse SO data, thus assisting in fully utilizing the SO data in scientific studies and comparisons with other sparse datasets. The DMPs are valuable for scientific studies and to facilitate validation of non-coincident measurements

    Cuarteles de Invierno: The Silent Subversion of Unsung Tangos

    No full text
    To date, critics have not analyzed the titles of the tangos mentioned in Osvaldo Soriano’s novel Cuarteles de Invierno. Since the main character is a tango singer who has been invited to perform for a festival sponsored by the military, the tangos are important because the singer never gets a chance to sing. The silence requires a cultural knowledge of the tangos in order to infer a more subtle form of subversion to counter the military regime’s mandates. This article analyzes the lyrics to the tangos mentioned
    corecore