312 research outputs found

    Impaired Langerhans cell migration in psoriasis

    Get PDF
    We have examined whether psoriasis is associated with systemic effects on epidermal Langerhans cell (LC) function and, specifically, the migration of LCs from the skin. Compared with normal skin, the frequency and morphology of epidermal LCs in uninvolved skin from patients with psoriasis was normal. However, mobilization of these cells in response to stimuli that normally induce migration (chemical allergen, tumor necrosis factor α [TNF-α], and interleukin-1β [IL-1β]) was largely absent, despite the fact that treatment with TNF-α and IL-1β was associated with comparable inflammatory reactions in patients and controls. The failure of LC migration from uninvolved skin was not attributable to altered expression of receptors for IL-1β or TNF-α that are required for mobilization, nor was there an association with induced cutaneous cytokine expression. Although a role for altered dynamics of LC migration/turnover has not been formally excluded, these data reveal a very consistent decrement of LC function in psoriasis that may play a decisive role in disease pathogenesis

    Assessment of the inherent allergenic potential of proteins in mice.

    Get PDF
    There is considerable interest in the design of approaches that will permit the accurate identification and characterization of proteins that have the inherent potential to induce sensitization and cause food allergy. Among the methods used currently as part of such assessments are consideration of structural similarity to, or amino acid sequence homology with, known human allergens; whether there exists immunologic cross-reactivity with known allergens; and measurement of resistance to proteolytic digestion in a simulated gastric fluid. Although such approaches provide information that will contribute to a safety assessment, they do not--either individually or collectively--provide a direct evaluation of the ability of a novel protein to cause allergic sensitization. For this reason, work is in progress to design and evaluate suitable animal models that will provide a more holistic assessment of allergenic potential. In this laboratory, the approach we have taken has been to examine the characteristics of immune responses induced in mice following parenteral (intraperitoneal) exposure to test proteins. The basis of this method is to determine simultaneously the overall immunogenic potential of proteins [measured as a function of immunoglobulin (Ig) G antibody responses] and to compare this with their ability to provoke IgE antibody production, IgE being the antibody that effects allergic sensitization. Although this approach has not yet been evaluated fully, the results available to date suggest that it will be possible to distinguish proteins that have the inherent potential to induce allergic sensitization from those that do not. In this article we summarize progress to date in the context of the scientific background against which such methods are being developed

    Sports Utility Vehicles: A Public Health Model of Their Climate and Air Pollution Impacts in the United Kingdom

    Get PDF
    The emission benefits of shifting towards battery electric vehicles have so far been hampered by a trend towards sports utility vehicles (SUVs). This study assesses the current and future emissions from SUVs and their potential impact on public health and climate targets. We modelled five scenarios of varying SUV sales and electrification rates, and projected associated carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Multiple linear regression was used to determine the relationship between vehicle characteristics and emissions. Cumulative CO2 emissions were valued using the social cost of carbon approach. Life table analyses were used to project and value life years saved from NOx emission reductions. Larger SUVs were disproportionately high emitters of CO2 and NOx. Replacing these with small SUVs achieved significant benefits, saving 702 MtCO2e by 2050 and 1.8 million life years from NO2 reductions. The largest benefits were achieved when combined with electrification, saving 1181 MtCO2e and gaining 3.7 million life years, with a societal value in the range of GBP 10-100s billion(s). Downsizing SUVs could be associated with major public health benefits from reduced CO2 and NOx emissions, in addition to the benefits of electrification. This could be achieved by demand-side mass-based vehicle taxation and supply-side changes to regulations, by tying emission limits to a vehicle's footprint rather than its mass

    Mechanistic relationship among mutagenicity, skin sensitization, and skin carcinogenicity.

    Get PDF
    Twenty organic Salmonella mutagens, seven of which (including benzo[a]pyrene) are established skin carcinogens, and one of which (2-chloroethanol) is a well-defined noncarcinogen to skin, have been evaluated for skin-sensitizing activity using the local lymph node assay. The relative mutagenicity of the agents to Salmonella was also established. Fourteen of the chemicals were positive in the local lymph node assay, including the seven skin carcinogens. 2-Chloroethanol was inactive as a sensitizing agent. We suggest that a variety of factors contributes to the lack of sensitizing activity of the remaining six bacterial mutagens: extremes of intrinsic chemical reactivity, high water solubility reducing dermal translocation, and inappropriate dermal metabolism. Two reference skin-sensitizing agents (an oxazolinone and fluorescein isothiocyanate) were established as in vitro clastogens after their recognition as nonmutagens to Salmonella. These data imply that mutagenicity, rather than simply activity in the Salmonella assay, is a primary stimulus for electrophilic sensitization and carcinogenic initiation in the skin. We conclude that genotoxicity data for an agent can provide indications of the agent's potential to induce skin sensitization and that genotoxins which are skin-sensitizing agents have an enhanced potential to initiate skin carcinogenesis. We suggest that common, albeit individually distinct, structure-activity relationships underpin genotoxicity, skin sensitization, and the initiation of skin carcinogenesis. These relationships should simplify the hazard evaluation of chemicals and contribute to a reduction in animal usage. Several predictions of skin carcinogenicity are made based on the data presented

    Assessment of protein allergenicity on the basis of immune reactivity: animal models.

    Get PDF
    Because of the public concern surrounding the issue of the safety of genetically modified organisms, it is critical to have appropriate methodologies to aid investigators in identifying potential hazards associated with consumption of foods produced with these materials. A recent panel of experts convened by the Food and Agriculture Organization and World Health Organization suggested there is scientific evidence that using data from animal studies will contribute important information regarding the allergenicity of foods derived from biotechnology. This view has given further impetus to the development of suitable animal models for allergenicity assessment. This article is a review of what has been achieved and what still has to be accomplished regarding several different animal models. Progress made in the design and evaluation of models in the rat, the mouse, the dog and in swine is reviewed and discussed

    Immunological and Metabolomic Impacts of Administration of Cry1Ab Protein and MON 810 Maize in Mouse

    Get PDF
    We have investigated the immunological and metabolomic impacts of Cry1Ab administration to mice, either as a purified protein or as the Cry1Ab-expressing genetically modified (GM) MON810 maize. Humoral and cellular specific immune responses induced in BALB/cJ mice after intra-gastric (i.g.) or intra-peritoneal (i.p.) administration of purified Cry1Ab were analyzed and compared with those induced by proteins of various immunogenic and allergic potencies. Possible unintended effects of the genetic modification on the pattern of expression of maize natural allergens were studied using IgE-immunoblot and sera from maize-allergic patients. Mice were experimentally sensitized (i.g. or i.p. route) with protein extracts from GM or non-GM maize, and then anti-maize proteins and anti-Cry1Ab–induced immune responses were analyzed. In parallel, longitudinal metabolomic studies were performed on the urine of mice treated via the i.g. route. Weak immune responses were observed after i.g. administration of the different proteins. Using the i.p. route, a clear Th2 response was observed with the known allergenic proteins, whereas a mixed Th1/Th2 immune response was observed with immunogenic protein not known to be allergenic and with Cry1Ab. This then reflects protein immunogenicity in the BALB/c Th2-biased mouse strain rather than allergenicity. No difference in natural maize allergen profiles was evidenced between MON810 and its non-GM comparator. Immune responses against maize proteins were quantitatively equivalent in mice treated with MON810 vs the non-GM counterpart and no anti-Cry1Ab–specific immune response was detected in mice that received MON810. Metabolomic studies showed a slight “cultivar” effect, which represented less than 1% of the initial metabolic information. Our results confirm the immunogenicity of purified Cry1Ab without evidence of allergenic potential. Immunological and metabolomic studies revealed slight differences in mouse metabolic profiles after i.g. administration of MON810 vs its non-GM counterpart, but no significant unintended effect of the genetic modification on immune responses was seen

    Mesenteric lymph node transcriptome profiles in BALB/c mice sensitized to three common food allergens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Food allergy is a serious health concern among infants and young children. Although immunological mechanism of food allergy is well documented, the molecular mechanism(s) involved in food allergen sensitization have not been well characterized. Therefore, the present study analyzed the mesenteric lymph node (MLN) transcriptome profiles of BALB/c mice in response to three common food allergens.</p> <p>Results</p> <p>Microarray analysis identified a total of 1361, 533 and 488 differentially expressed genes in response to β-lactoglobulin (BLG) from cow's milk, ovalbumin (OVA) from hen's egg white and peanut agglutinin (PNA) sensitizations, respectively (p < 0.05). A total of 150 genes were commonly expressed in all antigen sensitized groups. The expression of seven representative genes from microarray experiment was validated by real-time RT-PCR. All allergens induced significant ear swelling and serum IgG1 concentrations, whereas IgE concentrations were increased in BLG- and PNA-treated mice (p < 0.05). Treatment with OVA and PNA significantly induced plasma histamine concentrations (p < 0.05). The PCA demonstrated the presence of allergen-specific IgE in the serum of previously sensitized and challenged mice.</p> <p>Conclusions</p> <p>Immunological profiles indicate that the allergen dosages used are sufficient to sensitize the BALB/c mice and to conduct transcriptome profiling. Microarray studies identified several differentially expressed genes in the sensitization phase of the food allergy. These findings will help to better understand the underlying molecular mechanism(s) of food allergen sensitizations and may be useful in identifying the potential biomarkers of food allergy.</p

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    Granites in Malaysia: from hard rock to clay minerals

    Get PDF
    Tropical areas with extreme climates are host to extreme weathering processes and the weathered materials are normally left in situ with the absence of large-scale denudation processes such as glaciations. This research tries to understand the behaviour of the weathered granites in Malaysia, from hard rock to the final products, the clay minerals. Grade 1 or fresh granites were sampled from different locations in Malaysia and analysed. The residual soil above the fresh granites, which were formed from the weathering activities were also analysed. The types of clay minerals and clay-sized particle grains found from two study locations were compared. The bases of the comparisons were index properties, strength properties and the mineralogical properties. The parent rocks were also analysed to obtain the origin of the minerals formed at the later stages of weathering. It was found that the strength of the soil mass formed from the weathering processes generally depend on the clay-sized particle grains rather than the types of clay minerals. It should however be noted that only halloysites and smectites clay minerals were observed in the samples obtained from the two study locations
    corecore