1,241 research outputs found

    Demonstrating the role of symbionts in mediating detoxification in herbivores

    Get PDF

    The role of behavioural heterogeneity on infection patterns: implications for pathogen transmission

    Get PDF
    Animals infected with pathogens often differ in behaviour from their uninfected counterparts, and these differences may be key to understanding zoonotic pathogen transmission. To explore behavioural heterogeneity and its role in pathogen transmission, we studied deer mice, Peromyscus maniculatus, under field conditions.Deer mice are the natural host of Sin Nombre virus (SNV), a zoonotic pathogen with high human mortality.We live-trapped mice in May, July and September of 2009 and 2010, marked captures with passive integrated transponder (PIT) tags, recorded physical characteristics and collected blood samples for SNV analysis. For 4 nights after each trapping session, we observed behaviour with a novel surveillance system of nine camera stations, each consisting of a foraging tray, infrared camera, PIT antenna and data logger.We found that deer mice infected with SNV (30.0%) engaged more frequently in behaviours that increased the probability of intraspecific encounters and SNV transmission than did uninfected deer mice. When deer mice were categorized as bold (31.7%) or shy (68.3%) based on these behaviours, bold behaviour was predictive of positive SNV status. Bold deer mice were three times more likely to be infected with SNV than were shy deer mice. These results suggest that a small percentage of bold individuals are responsible for a majority of SNV transmission events, and that behavioural phenotype is an important consideration in transmission dynamics of zoonotic diseases

    Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies.

    Get PDF
    Immediate freezing at -20°C or below has been considered the gold standard for microbiome preservation, yet this approach is not feasible for many field studies, ranging from anthropology to wildlife conservation. Here we tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including such types of variation as freeze-thaw cycles and the high temperature fluctuations often encountered under field conditions. We found that three of the methods-95% ethanol, FTA cards, and the OMNIgene Gut kit-can preserve samples sufficiently well at ambient temperatures such that differences at 8 weeks are comparable to differences among technical replicates. However, even the worst methods, including those with no fixative, were able to reveal microbiome differences between species at 8 weeks and between individuals after a week, allowing meta-analyses of samples collected using various methods when the effect of interest is expected to be larger than interindividual variation (although use of a single method within a study is strongly recommended to reduce batch effects). Encouragingly for FTA cards, the differences caused by this method are systematic and can be detrended. As in other studies, we strongly caution against the use of 70% ethanol. The results, spanning 15 individuals and over 1,200 samples, provide our most comprehensive view to date of storage effects on stool and provide a paradigm for the future studies of other sample types that will be required to provide a global view of microbial diversity and its interaction among humans, animals, and the environment. IMPORTANCE Our study, spanning 15 individuals and over 1,200 samples, provides our most comprehensive view to date of storage and stabilization effects on stool. We tested five methods for preserving human and dog fecal specimens for periods of up to 8 weeks, including the types of variation often encountered under field conditions, such as freeze-thaw cycles and high temperature fluctuations. We show that several cost-effective methods provide excellent microbiome stability out to 8 weeks, opening up a range of field studies with humans and wildlife that would otherwise be cost-prohibitive

    Letter From Fred Morris Dearing to Francis Mairs Huntington-Wilson, September 9, 1943

    Get PDF
    A handwritten letter from Fred Morris Dearing addressed to Francis Mairs Huntington-Wilson, dated September 9, 1943. Within, Dearing comments on Wilson\u27s recently published article in the New York Herald-Tribune.https://digitalcommons.ursinus.edu/fmhw_secondworldwar_documents/1074/thumbnail.jp

    Ambient Temperature Influences Diet Selection and Physiology of an Herbivorous Mammal, \u3cem\u3eNeotoma albigula\u3c/em\u3e

    Get PDF
    The whitethroat woodrat (Neotoma albigula) eats juniper (Juniperus monosperma), but the amount of juniper in its diet varies seasonally. We tested whether changes in juniper consumption are due to changes in ambient temperature and what the physiological consequences of consuming plant secondary compounds (PSCs) at different ambient temperatures might be. Woodrats were acclimated to either 20ºC or 28ºC. Later, they were given two diets to choose from (50% juniper and a nontoxic control) for 7 d. Food intake, resting metabolic rate (RMR), and body temperature (Tb) were measured over the last 2 d. Woodrats at 28ºC ate significantly less juniper, both proportionally and absolutely, than woodrats at 20ºC. RMRs were higher for woodrats consuming juniper regardless of ambient temperature, and Tb was higher for woodrats consuming juniper at 28ºC than for woodrats eating control diet at 28ºC. Thus, juniper consumption by N. albigula is influenced by ambient temperature. We conclude that juniper may influence thermoregulation in N. albigula in ways that are helpful at low temperatures but harmful at warmer temperatures in that juniper PSCs may be more toxic at warmer temperatures. The results suggest that increases in ambient temperature associated with climate change could significantly influence foraging behavior of mammalian herbivores

    Experimental evolution on a wild mammal species results in modifications of gut microbial communities

    Get PDF
    Comparative studies have shown that diet, life history, and phylogeny interact to determine microbial community structure across mammalian hosts. However, these studies are often confounded by numerous factors. Selection experiments offer unique opportunities to validate conclusions and test hypotheses generated by comparative studies. We used a replicated, 15-generation selection experiment on bank voles (Myodes glareolus) that have been selected for high swim-induced aerobic metabolism, predatory behavior toward crickets, and the ability to maintain body mass on a high-fiber, herbivorous diet. We predicted that selection on host performance, mimicking adaptive radiation, would result in distinct microbial signatures. We collected foregut and cecum samples from animals that were all fed the same nutrient-rich diet and had not been subjected to any performance tests. We conducted microbial inventories of gut contents by sequencing the V4 region of the 16S rRNA gene. We found no differences in cecal microbial community structure or diversity between control lines and the aerobic or predatory lines. However, the cecal chambers of voles selected for herbivorous capability harbored distinct microbial communities that exhibited higher diversity than control lines. The foregut communities of herbivorous-selected voles were also distinct from control lines. Overall, this experiment suggests that differences in microbial communities across herbivorous mammals may be evolved, and not solely driven by current diet or other transient factors

    AC Power Monitoring System Provides Individual Circuit Energy Consumption Data

    Get PDF
    Motivated by high energy costs, people and organizations want to cut back on their energy consumption. However, the only feedback consumers typically receive is a monthly bill listing their total electricity usage (in kWh). Some companies have begun developing systems that allow households and organizations to monitor their energy usage for individual circuits. Available systems are expensive so a CU engineering senior design team has designed, fabricated, and tested a system for use at Cedarville University. The AC power monitoring system has the ability to measure energy consumption for each individual circuit in the breaker panel, store the data, and then provide the user with visual feedback on energy usage behavior. The basic system provides the proof of concept for future senior design teams. After more testing is completed, further development of this product will be needed by other senior design teams. Eventually, this energy monitoring system could be expanded to include larger loads such as HVAC systems and refrigeration units. It is also envisioned that future projects might be able to provide the user with suggestions for changing and improving energy usage behavior. Failure prediction of equipment on individual circuits could also stem from this initial project. For this project, it has been clearly shown that the concept is feasible, expandable, and cost-effective

    AC Power Monitoring System

    Get PDF
    Motivated by high energy costs, people and organizations want to cut back on their energy consumption. However, the only feedback consumers typically receive is a monthly bill listing their total electricity usage (in kWh). Some companies have begun developing systems that allow households and organizations to monitor their energy usage for individual circuits. Available systems are expensive so a CU engineering senior design team has designed, fabricated, and tested a system for use at Cedarville University. The AC power monitoring system has the ability to measure energy consumption for each individual circuit in the breaker panel, store the data, and then provide the user with visual feedback on energy usage behavior. The basic system provides the proof of concept for future senior design teams. After more testing is completed, further development of this product will be needed by other senior design teams. Eventually, this energy monitoring system could be expanded to include larger loads such as HVAC systems and refrigeration units. It is also envisioned that future projects might be able to provide the user with suggestions for changing and improving energy usage behavior. Failure prediction of equipment on individual circuits could also stem from this initial project. For this project, it has been clearly shown that the concept is feasible, expandable, and cost-effective
    • …
    corecore