47 research outputs found

    Topology and temperature dependence of the diffuse X-ray scattering in Na0.5Bi0.5TiO3 ferroelectric single crystals

    Get PDF
    The results of high-resolution measurements of the diffuse X-ray scattering produced by a perovskite-based Na0.5Bi0.5TiO3 ferroelectric single crystal between 40 and 620 K are reported. The study was designed as an attempt to resolve numerous controversies regarding the average structure of Na0.5Bi0.5TiO3, such as the mechanism of the phase transitions between the tetragonal, P4bm, and rhombohedral | monoclinic, R3c | Cc, space groups and the correlation between structural changes and macroscopic physical properties. The starting point was to search for any transformations of structural disorder in the temperature range of thermal depoling (420–480 K), where the average structure is known to remain unchanged. The intensity distribution around the {032} pseudocubic reflection was collected using a PILATUS 100K detector at the I16 beamline of the Diamond Light Source (UK). The data revealed previously unknown features of the diffuse scattering, including a system of dual asymmetric L-shaped diffuse scattering streaks. The topology, temperature dependence, and relationship between Bragg and diffuse intensities suggest the presence of complex microstructure in the low-temperature R3c | Cc phase. This microstructure may be formed by the persistence of the higher-temperature P4bm phase, built into a lower-temperature R3c | Cc matrix, accompanied by the related long-range strain fields. Finally, it is shown that a correlation between the temperature dependence of the X-ray scattering features and the temperature regime of thermal depoling is present

    Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3)

    Get PDF
    The temperature-composition phase diagram of barium calcium titanate zirconate (x(Ba0.7Ca0.3TiO3)(1-x)(BaZr0.2Ti0.8O3); BCTZ) has been reinvestigated using high-resolution synchrotron x-ray powder diffraction. Contrary to previous reports of an unusual rhombohedral-tetragonal phase transition in this system, we have observed an intermediate orthorhombic phase, isostructural to that present in the parent phase, BaTiO3, and we identify the previously assigned T-R transition as a T-O transition. We also observe the O-R transition coalescing with the previously observed triple point, forming a phase convergence region. The implication of the orthorhombic phase in reconciling the exceptional piezoelectric properties with the surrounding phase diagram is discussed

    Anomalous thermal expansion in 1D transition-metal cyanides: what makes the novel trimetallic cyanide Cu1/3Ag1/3Au1/3CN behave differently?

    Get PDF
    The structural dynamics of a quasi-one-dimensional (1D) mixed-metal cyanide, Cu1/3Ag1/3Au1/3CN, with intriguing thermal properties is explored. All the current known related compounds with straight-chain structures, such as group 11 cyanides CuCN, AgCN, AuCN and bimetallic cyanides MxM’1-xCN (M, M’ = Cu, Ag, Au), exhibit 1D negative thermal expansion (NTE) along the chains and positive thermal expansion (PTE) perpendicular to them. Cu1/3Ag1/3Au1/3CN exhibits similar PTE perpendicular to the chains, however PTE, rather than NTE, is also observed along the chains. In order to understand the origin of this unexpected behavior, inelastic neutron scattering (INS) measurements were carried out, underpinned by lattice-dynamical density-functional-theory (DFT) calculations. Synchrotron-based pair-distribution-function (PDF) analysis and 13C solid-state nuclear-magnetic-resonance (SSNMR) measurements were also performed to build an input structural model for the lattice dynamical study. The results indicate that transverse motions of the metal ions are responsible for the PTE perpendicular to the chains, as is the case for the related group 11 cyanides. However NTE along the chain due to the tension effect of these transverse motions is not observed. As there are different metal-to-cyanide bond lengths in Cu1/3Ag1/3Au1/3CN, the metals in neighboring chains cannot all be truly co-planar in a straight-chain model. For this system, DFT-based phonon calculations predict small PTE along the chain due to low-energy chain-slipping modes induced by a bond-rotation effect on the weak metallophilic bonds. However the observed PTE is greater than that predicted with the straight-chain model. Small bends in the chain to accommodate truly co-planar metals provide an alternative explanation for thermal behavior. These would mitigate the tension effect induced by the transverse motions of the metals and, as temperature increases and the chains move further apart, a straightening could occur resulting in the observed PTE. This hypothesis is further supported by unusual evolution in the phonon spectra, which suggest small changes in local symmetry with temperature

    Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    Get PDF
    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications

    New insights into the application of pair distribution function studies to biogenic and synthetic hydroxyapatites

    Get PDF
    Biogenic and synthetic hydroxyapatites are confounding materials whose properties remain uncertain, even after years of study. Pair distribution function (PDF) analysis was applied to hydroxyapatites in the 1970’s and 1980’s, but this area of research has not taken full advantage of the relatively recent advances in synchrotron facilities. Here, synchrotron X-ray PDF analysis is compared to techniques commonly used to characterise hydroxyapatite (such as wide angle X-ray scattering, Fourier-transform infrared spectroscopy and thermogravimetric analysis) for a range of biogenic and synthetic hydroxyapatites with a wide range of carbonate substitution. Contributions to the pair distribution function from collagen, carbonate and finite crystallite size were examined through principal component analysis and comparison of PDFs. Noticeable contributions from collagen were observed in biogenic PDFs when compared to synthetic PDFs (namely r < 15 Å), consistent with simulated PDFs of collagen structures. Additionally, changes in local structure were observed for PDFs of synthetic hydroxyapatites with differing carbonate content, notably in features near 4 Å, 8 Å and 19 Å. Regression models were generated to predict carbonate substitution from peak position within the PDFs

    Investigating pair distribution function use in analysis of Nanocrystalline Hydroxyapatite and Carbonate Substituted Hydroxyapatite

    Get PDF
    Hy­droxy­apatite (HA) is a com­plex material, which is often nanocrystalline when found within a biological setting. This work has directly com­pared the structural characteristics derived from data collected using a conventional laboratory-based X-ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X-ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real-space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real-space refinements were com­pared to evaluate their application to crystalline and nanocrystalline hy­droxy­apatite. Significant relationships were observed between real-space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hy­droxy­apatite can benefit several fields, including both biomedical and clinical settings.Engineering and Physical Sciences Research Council (EPSRC): EP/T034238/1. Royal Society Wolfson Fellowship: RSWF/R1/180012. Diamond Light Source, instrument I15-1: proposal ee18638

    Investigation of the depolarisation transition in Bi-based relaxor ferroelectrics

    Get PDF
    The loss of macroscopic polarisation in relaxor ferroelectric (Na0.8K0.2)(1/2)Bi1/2TiO3 ceramics doped with BiZn1/2Ti1/2O3 has been studied by electrical and structural methods. These indicate that the phenomena that are coupled in a displacive phase transition are not necessarily coupled in the depolarisation of Na1/2Bi1/2TiO3-based relaxors and a concept of correlated and uncorrelated switching of dipoles within adjacent unit cells is used to explain this. Second harmonic generation performed on poled ceramics during heating yields values of the freezing temperature and shows a broad temperature range of similar to 100 degrees C across which the structure changes from field-induced ferroelectric to an equilibrium-state ergodic relaxor. Electrical poling at room temperature causes poled regions to increase in size by similar to 2 orders of magnitude. A model illustrating the main steps in thermal depolarisation is described that does not require a phase transition to take place on a unit cell level.open1

    1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays

    Get PDF
    The Diamond Light Source (DLS) beamline I15-1 measures atomic pair distribution functions (PDF) using scattering of 40-80 keV X-rays. A unique focusing element was needed to condense these X-rays from an initial large cross section (11.0 mm H × 4.2 mm V) into a required spot size of FWHM ≈680 ÎŒm (H) × 20 ÎŒm (V) at a variable position between the sample and the detector. The large numerical aperture is achieved by coating a silicon substrate over 1 m long with three multilayer stripes of Bragg angle 4.2 mrad. One stripe selects X-rays of each energy 40.0, 65.4, and 76.6 keV. Sixteen piezoelectric bimorph actuators attached to the sides of the mirror substrate adjusted the reflecting surface’s shape. Focal spots of vertical width < 15 ÎŒm were obtained at three positions over a 0.92 m range, with fast, easy switching from one focal position to another. Minimized root mean square slope errors were close to 0.5 ÎŒrad after subtraction of a uniform curvature. Reflectivity curves taken along each stripe showed consistent high peaks with generally small angular variation of peak positions. This is the first application of a 1 m long multilayercoated bimorph mirror at a synchrotron beamline. Data collected with its help on a slice of a lithium ion battery’s cathode are presented
    corecore