394 research outputs found

    Amp-PCR: Combining a Random Unbiased Phi29-Amplification with a Specific Real-Time PCR, Performed in One Tube to Increase PCR Sensitivity

    Get PDF
    In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR, an unbiased random Phi29 pre-amplification is combined with a specific real-time PCR reaction. The two reactions are separated physically by a wax-layer (AmpliWax®) and are run in sequel in the same sealed tube. Amp-PCR can increase the specific PCR signal at least 100×106-fold and make it possible to detect positive samples normally under the detection limit of the specific real-time PCR. The risk of contamination is eliminated and Amp-PCR could replace nested-PCR in situations where increased sensitivity is needed e.g. in routine PCR diagnostic analysis. We show Amp-PCR to work on clinical samples containing circular and linear viral dsDNA genomes, but can work well on DNA of any origin, both from non-cellular (virus) and cellular sources (bacteria, archae, eukaryotes)

    High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Get PDF
    BACKGROUND: Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. RESULTS: A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point. CONCLUSIONS: Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample

    Pulmonary valve endocarditis caused by right ventricular outflow obstruction in association with sinus of valsalva aneurysm: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Right-sided infective endocarditis is uncommon. This is primarily seen in patients with intravenous drug use, pacemaker or central venous lines, or congenital heart disease. The vast majority of cases involve the tricuspid valve. Isolated pulmonary valve endocarditis is extremely rare. We report the first case of a pulmonary valve nonbacterial thrombotic endocarditis caused by right ventricular outlflow tract (RVOT) obstruction in association with a large sinus of Valsalva aneurysm.</p> <p>Case presentation</p> <p>A 60-year-old man with a six-week history of fever, initially treated as pneumonia and sinusitis with levofloxacin, was admitted to the hospital with a new onset of a heart murmur. An echocardiogram showed thickening of the pulmonary valve suggestive of valve vegetation. A dilated aortic root and sinus of Valsalva aneurysm measuring at least 6.4 cm were also identified. The patient was empirically treated for infective endocarditis with vancomycin and gentamycin for 28 days. Four months later, the patient underwent resection of a large aortic root aneurysm and exploration of the pulmonary valve. During the surgery, vegetation of the pulmonary valve was confirmed. Microscopic pathological examination revealed fibrinous debris with acute inflammation and organizing fibrosis with chronic inflammation, compatible with a vegetation. Special stains were negative for bacteria and fungi.</p> <p>Conclusion</p> <p>This is the first case report of a pulmonary valve nonbacterial endocarditis caused by RVOT obstruction in association with a sinus of Valsalva aneurysm. We speculate that jets created by the RVOT obstruction and large sinus of Valsalva aneurysm hitting against endothelium of the pulmonary valve is the etiology of this rare nonbacterial thrombotic endocarditis.</p

    Highly efficient PCR assay to discriminate allelic DNA methylation status using whole genome amplification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously developed a simple method termed <it>Hpa</it>II-<it>McrBC </it>PCR (HM-PCR) to discriminate allelic methylation status of the genomic sites of interest, and successfully applied it to a comprehensive analysis of CpG islands (CGIs) on human chromosome 21q. However, HM-PCR requires 200 ng of genomic DNA to examine one target site, thereby precluding its application to such samples that are limited in quantity.</p> <p>Findings</p> <p>We developed <it>Hpa</it>II-<it>McrBC </it>whole-genome-amplification PCR (HM-WGA-PCR) that uses whole-genome-amplified DNA as the template. HM-WGA-PCR uses only 1/100th the genomic template material required for HM-PCR. Indeed, we successfully analyzed 147 CGIs by HM-WGA-PCR using only ~300 ng of DNA, whereas previous HM-PCR study had required ~30 μg. Furthermore, we confirmed that allelic methylation status revealed by HM-WGA-PCR is identical to that by HM-PCR in every case of the 147 CGIs tested, proving high consistency between the two methods.</p> <p>Conclusions</p> <p>HM-WGA-PCR would serve as a reliable alternative to HM-PCR in the analysis of allelic methylation status when the quantity of DNA available is limited.</p

    Structural Alterations from Multiple Displacement Amplification of a Human Genome Revealed by Mate-Pair Sequencing

    Get PDF
    Comprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification. Multiple displacement amplification led to a decrease in clone coverage and an increase by two orders of magnitude in the prevalence of inversions, but did not increase the prevalence of translocations. While multiple strand displacement amplification may find uses in translocation analyses, it is likely that alternative amplification strategies need to be developed to meet the demands of cancer genomics

    Artificial Polyploidy Improves Bacterial Single Cell Genome Recovery

    Get PDF
    BACKGROUND: Single cell genomics (SCG) is a combination of methods whose goal is to decipher the complete genomic sequence from a single cell and has been applied mostly to organisms with smaller genomes, such as bacteria and archaea. Prior single cell studies showed that a significant portion of a genome could be obtained. However, breakages of genomic DNA and amplification bias have made it very challenging to acquire a complete genome with single cells. We investigated an artificial method to induce polyploidy in Bacillus subtilis ATCC 6633 by blocking cell division and have shown that we can significantly improve the performance of genomic sequencing from a single cell. METHODOLOGY/PRINCIPAL FINDINGS: We inhibited the bacterial cytoskeleton protein FtsZ in B.subtilis with an FtsZ-inhibiting compound, PC190723, resulting in larger undivided single cells with multiple copies of its genome. qPCR assays of these larger, sorted cells showed higher DNA content, have less amplification bias, and greater genomic recovery than untreated cells. SIGNIFICANCE: The method presented here shows the potential to obtain a nearly complete genome sequence from a single bacterial cell. With millions of uncultured bacterial species in nature, this method holds tremendous promise to provide insight into the genomic novelty of yet-to-be discovered species, and given the temporary effects of artificial polyploidy coupled with the ability to sort and distinguish differences in cell size and genomic DNA content, may allow recovery of specific organisms in addition to their genomes

    Genotyping Performance Assessment of Whole Genome Amplified DNA with Respect to Multiplexing Level of Assay and Its Period of Storage

    Get PDF
    Whole genome amplification can faithfully amplify genomic DNA (gDNA) with minimal bias and substantial genome coverage. Whole genome amplified DNA (wgaDNA) has been tested to be workable for high-throughput genotyping arrays. However, issues about whether wgaDNA would decrease genotyping performance at increasing multiplexing levels and whether the storage period of wgaDNA would reduce genotyping performance have not been examined. Using the Sequenom MassARRAY iPLEX Gold assays, we investigated 174 single nucleotide polymorphisms for 3 groups of matched samples: group 1 of 20 gDNA samples, group 2 of 20 freshly prepared wgaDNA samples, and group 3 of 20 stored wgaDNA samples that had been kept frozen at −70°C for 18 months. MassARRAY is a medium-throughput genotyping platform with reaction chemistry different from those of high-throughput genotyping arrays. The results showed that genotyping performance (efficiency and accuracy) of freshly prepared wgaDNA was similar to that of gDNA at various multiplexing levels (17-plex, 21-plex, 28-plex and 36-plex) of the MassARRAY assays. However, compared with gDNA or freshly prepared wgaDNA, stored wgaDNA was found to give diminished genotyping performance (efficiency and accuracy) due to potentially inferior quality. Consequently, no matter whether gDNA or wgaDNA was used, better genotyping efficiency would tend to have better genotyping accuracy

    Laser capture microdissection (LCM) and whole genome amplification (WGA) of DNA from normal breast tissue --- optimization for genome wide array analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laser capture microdissection (LCM) can be applied to tissues where cells of interest are distinguishable from surrounding cell populations. Here, we have optimized LCM for fresh frozen normal breast tissue where large amounts of fat can cause problems during microdissection. Since the amount of DNA needed for genome wide analyses, such as single nucleotide polymorphism (SNP) arrays, is often greater than what can be obtained from the dissected tissue, we have compared three different whole genome amplification (WGA) kits for amplification of DNA from LCM material. In addition, the genome wide profiling methods commonly used today require extremely high DNA quality compared to PCR based techniques and DNA quality is thus critical for successful downstream analyses.</p> <p>Findings</p> <p>We found that by using FrameSlides without glass backing for LCM and treating the slides with acetone after staining, the problems caused by excessive fat could be significantly decreased. The amount of DNA obtained after extraction from LCM tissue was not sufficient for direct SNP array analysis in our material. However, the two WGA kits based on Phi29 polymerase technology (Repli-g<sup>® </sup>(Qiagen) and GenomiPhi (GE Healthcare)) gave relatively long amplification products, and amplified DNA from Repli-g<sup>® </sup>gave call rates in the subsequent SNP analysis close to those from non-amplified DNA. Furthermore, the quality of the input DNA for WGA was found to be essential for successful SNP array results and initial DNA fragmentation problems could be reduced by switching from a regular halogen lamp to a VIS-LED lamp during LCM.</p> <p>Conclusions</p> <p>LCM must be optimized to work satisfactorily in difficult tissues. We describe a work flow for fresh frozen normal breast tissue where fat is inclined to cause problems if sample treatment is not adapted to this tissue. We also show that the Phi29-based Repli-g<sup>® </sup>WGA kit (Qiagen) is a feasible approach to amplify DNA of high quality prior to genome wide analyses such as SNP profiling.</p

    Real-time PCR detection of Human Herpesvirus 1-5 in patients lacking clinical signs of a viral CNS infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infections of the central nervous system (CNS) with herpes- or enterovirus can be self-limiting and benign, but occasionally result in severe and fatal disease. The polymerase chain reaction (PCR) has revolutionized the diagnostics of viral pathogens, and by multiple displacement amplification (MDA) prior to real-time PCR the sensitivity might be further enhanced. The aim of this study was to investigate if herpes- or enterovirus can be detected in cerebrospinal fluid (CSF) from patients without symptoms.</p> <p>Methods</p> <p>Cerebrospinal fluid (CSF) samples from 373 patients lacking typical symptoms of viral CNS infection were analysed by real-time PCR targeting herpesviruses or enteroviruses with or without prior MDA.</p> <p>Results</p> <p>In total, virus was detected in 17 patients (4%). Epstein-Barr virus (EBV) was most commonly detected, in general from patients with other conditions (e.g. infections, cerebral hemorrhage). MDA satisfactorily amplified viral DNA in the absence of human nucleic acids, but showed poor amplification capacity for viral DNA in CSF samples, and did not increase the sensitivity for herpes virus-detection with our methodology.</p> <p>Conclusions</p> <p>Viral pathogens are rarely detected in CSF from patients without signs of CNS infection, supporting the view that real-time PCR is a highly specific method to detect symptomatic CNS-infection caused by these viruses. However, EBV may be subclinically reactivated due to other pathological conditions in the CNS.</p

    A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation.</p> <p>Results</p> <p>This combined method allows detection of 14 pg (that is, four to five genomic copies) of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng) of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2) and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer.</p> <p>Conclusion</p> <p>The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.</p
    corecore