17 research outputs found
A Physiological Approach to Assessment and Rehabilitation of Acute Concussion in Collegiate and Professional Athletes
Sport-related concussion is an important condition that can affect collegiate and professional athletes. Expert consensus guidelines currently suggest that all athletes who sustain acute concussion be managed with a conservative approach consisting of relative rest and gradual resumption of school and sport activities with active intervention reserved for those with persistent post-concussion symptoms lasting >10–14 days for adults. Unfortunately, these recommendations place little emphasis on the rapid physical deconditioning that occurs in athletes within days of exercise cessation or the pathophysiological processes responsible for acute concussion symptoms that can be successfully targeted by evidence-based rehabilitation strategies. Based on our evolving approach to patients with persistent post-concussion symptoms, we now present an updated physiological approach to the initial medical assessment, rehabilitation, and multi-disciplinary management of collegiate and professional athletes with acute concussion. Utilizing the results of a careful clinical history, comprehensive physical examination and graded aerobic exercise testing, we outline how team physicians, and athletic training staff can partner with multi-disciplinary experts in traumatic brain injury to develop individually tailored rehabilitation programs that target the main physiological causes of acute concussion symptoms (autonomic nervous system dysfunction/exercise intolerance, vestibulo-ocular dysfunction, and cervical spine dysfunction) while maintaining the athlete's physical fitness during the recovery period. Considerations for multi-disciplinary medical clearance of collegiate and professional athletes as well as the application of this approach to non-elite athletes are also discussed
The Effects of Acute Anaerobic Exercise on the Cardiovascular and Metabolic Response to the Cold Pressor Test in Healthy Adult Males
International Journal of Exercise Science 13(3): 1729-1740, 2020. Little is known about the physiological response to the cold pressor test (CPT) when in a clinically-induced state of autonomic nervous system (ANS) imbalance, despite its utility in various disease- and injury-states. To date, research in this area is limited to acute aerobic and isometric exercise, with a paucity of research investigating the effects of anaerobic exercise on the physiological response to the CPT. Therefore, the purpose of our study was to assess the effects of the Wingate anaerobic cycle test (WAT) on cardiovascular (CV) and metabolic recovery following the CPT in a group of healthy adult males. A pre-post intervention study was conducted, whereby 10 healthy adult males (age = 29 ± 4 years, height = 182 ± 7 cm, mass = 83 ± 9 kg) completed a baseline cold pressor test (CPT-only) and a follow-up cold pressor test preceded by a Wingate anaerobic exercise test (WAT+CPT). Recovery slopes for various CV and metabolic variables, including heart rate (HR), blood pressure (BP), and relative oxygen consumption (O2) were analyzed using single-subject analysis, with celeration line slopes calculated for all participants in the CPT-only and WAT+CPT testing sessions. Celeration line slopes were compared between testing sessions using paired t-tests. No differences were identified for recovery slopes for HR (p = .295), diastolic BP (p = .300), and relative O2 (p= .176) when comparing CPT-only and WAT+CPT testing sessions. Our results suggest that the CPT elicits a CV and metabolic response beyond that elicited solely by an acute bout of anaerobic exercise. As such, the CPT may be able to serve as a surrogate test for anaerobic exercise for individuals where high-intensity exercise may be contraindicated. Future research is warranted however, as the specific physiological mechanisms governing the observed responses have yet to be elucidated
Effects of Creatine Supplementation on Brain Function and Health
While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion
Inflammatory pathway communication with skeletal muscle—Does aging play a role? A topical review of the current evidence
Abstract Skeletal muscle plays an integral role in locomotion, but also as part of the integrative physiological system. Recent progress has identified crosstalk between skeletal muscle and various physiological systems, including the immune system. Both the musculoskeletal and immune systems are impacted by aging. Increased age is associated with decreased muscle mass and function, while the immune system undergoes “inflammaging” and immunosenescence. Exercise is identified as a preventative medicine that can mitigate loss of function for both systems. This review summarizes: (1) the inflammatory pathways active in skeletal muscle; and (2) the inflammatory and skeletal muscle response to unaccustomed exercise in younger and older adults. Compared to younger adults, it appears older individuals have a muted pro‐inflammatory response and elevated anti‐inflammatory response to exercise. This important difference could contribute to decreased regeneration and recovery following unaccustomed exercise in older adults, as well as in chronic disease. The current research provides specific information on the role inflammation plays in altering skeletal muscle form and function, and adaptation to exercise; however, the pursuit of more knowledge in this area will delineate specific interventions that may enhance skeletal muscle recovery and promote resiliency in this tissue particularly with aging
Caffeine Alters Blood Potassium and Catecholamine Concentrations but not the Perception of Pain and Fatigue with a 1 km Cycling Sprint
Background: Caffeine has been used by some athletes to improve short-term high-intensity exercise performance; however, the literature is equivocal. Objectives: The objective of this study was to investigate the effects of caffeine on plasma potassium and catecholamine concentrations, pain and fatigue perception, to determine whether potassium ion handling and altered perception related to the central nervous system are associated with enhanced performance during a 1 km cycling time trial. Methods: Thirteen well trained men with a mean age of 27 ± 6 yrs (body mass: 76.4 ± 6.4 kg, height: 180 ± 7 cm, and max: 57.5 ± 4.6 ml·kg-1·min-1) were recruited. Participants were randomized to a caffeine (5 mg·kg-1) or a placebo condition using a double blind, cross over design. Results: Caffeine had no significant effects on the 1 km time-trial performance indicators of time (82.1 ± 2.4 vs. 81.9 ± 3.9s), peak (633.0 ± 83.6 vs. 638.7 ± 110.1 watts) or average power (466.0 ± 37.3 vs. 467.5 ± 59.9 watts; caffeine and placebo conditions respectively). In addition, caffeine had no significant effect on oxygen consumption () (4.11 ± 0.24 vs 4.06 ± 0.29 L),the perception of pain (5.6 ± 2.4 vs. 5.5 ± 2.6) or fatigue (7.1 ± 1.8 vs.7.1 ± 1.8: caffeine and placebo conditions respectively). There was a significantly greater increase in post-exercise blood lactate (p<0.05) and catecholamines (p<0.05) as well as a lower pre-exercise blood potassium concentration (p<0.05) in the caffeine condition. Conclusions: The results suggest that caffeine can enhance certain metabolic parameters, but these changes were unable to augment short-distance (1km), high-intensity cycling performance.
Keywords: ergogenic, anaerobic exercise, performance, oxygen consumptio
Anti-Inflammatory and Anti-Catabolic Effects of Creatine Supplementation: A Brief Review
It is well established that creatine supplementation, primarily when combined with resistance training, significantly increases measures of muscle mass and performance (primarily strength). Emerging research also indicates that creatine supplementation may have favorable effects on measures of bone biology. These anabolic adaptations may be related to creatine influencing cellular hydration status, high-energy phosphate metabolism, growth factors, muscle protein kinetics, and the bone remodeling process. Accumulating research also suggests that creatine supplementation has anti-inflammatory and anti-catabolic properties, which may help create a favorable environment for muscle and bone accretion and recovery from exercise. Creatine supplementation has the ability to decrease markers of inflammation and possibly attenuate cancerous tumor growth progression. From a musculoskeletal perspective, there is some evidence to show that creatine supplementation reduces measures of muscle protein catabolism (primarily in males) and bone resorption when combined with resistance training. The purpose of this brief review is to summarize the current body of literature examining the potential anti-inflammatory and anti-catabolic effects of creatine supplementation across various research populations
Caffeine Alters Blood Potassium and Catecholamine Concentrations but not the Perception of Pain and Fatigue with a 1 km Cycling Sprint
Background: Caffeine has been used by some athletes to improve short-term high-intensity exercise performance; however, the literature is equivocal. Objectives: The objective of this study was to investigate the effects of caffeine on plasma potassium and catecholamine concentrations, pain and fatigue perception, to determine whether potassium ion handling and altered perception related to the central nervous system are associated with enhanced performance during a 1 km cycling time trial. Methods: Thirteen well trained men with a mean age of 27 ± 6 yrs (body mass: 76.4 ± 6.4 kg, height: 180 ± 7 cm, and max: 57.5 ± 4.6 ml·kg-1·min-1) were recruited. Participants were randomized to a caffeine (5 mg·kg-1) or a placebo condition using a double blind, cross over design. Results: Caffeine had no significant effects on the 1 km time-trial performance indicators of time (82.1 ± 2.4 vs. 81.9 ± 3.9s), peak (633.0 ± 83.6 vs. 638.7 ± 110.1 watts) or average power (466.0 ± 37.3 vs. 467.5 ± 59.9 watts; caffeine and placebo conditions respectively). In addition, caffeine had no significant effect on oxygen consumption () (4.11 ± 0.24 vs 4.06 ± 0.29 L),the perception of pain (5.6 ± 2.4 vs. 5.5 ± 2.6) or fatigue (7.1 ± 1.8 vs.7.1 ± 1.8: caffeine and placebo conditions respectively). There was a significantly greater increase in post-exercise blood lactate (p0.05) and catecholamines (p0.05) as well as a lower pre-exercise blood potassium concentration (p0.05) in the caffeine condition. Conclusions: The results suggest that caffeine can enhance certain metabolic parameters, but these changes were unable to augment short-distance (1km), high-intensity cycling performance.Keywords: ergogenic, anaerobic exercise, performance, oxygen consumptio
The Size and Strength Development in Elite Youth Ice Hockey Players
Background: Ice hockey is a fast, physical sport that requires high levels of muscular strength, muscular endurance and agility. Objectives: This study was conducted to create a profile including: anthropometric measurement, muscular strength, muscular endurance, lower body jump height and distance, and agility characteristics for elite youth hockey players. Methods: Pre-season off-ice testing results were retrospectively reviewed from a human performance database. Variables included height, weight, body fat percentage, grip strength, push-ups/bench press, supine rows, the plank test, vertical jump, standing long jump, hip adductor and abductor strength, and the 5-10-5 shuttle, and. One-way ANOVAs (1group x 4 time) and Tukeys post-hoc tests were performed to determine changes in the immediately successive age group (p<0.05). Results: Participants included male Bantam-(age: 13-14) and Midget-(age: 15-17) AAA ice-hockey players (n=260). Age categories were grouped as 13 years old (yo)(n=75), 14 yo (n=70), 15 yo (n=58), and 16-17 yo (n=57). Increases between successive age groups were observed in the following variables: weight (13, 14, 15 and 16-17 yo), height (13 and 14 yo), left and right grip strength (13, 14, 15, and 16-17 yo), bench press (15 and 16-17 yo), left and right hip abduction (14, 15, and 16-17 yo), and vertical and standing long jump (13, 14, and 15 yo). Total time for the 5-10-5 shuttle run test decreased from 13 to 14yo, and 14 to 15 yo. Conclusion: Changes with age in off-ice performance variables of elite amateur hockey players should be recognized, followed, and addressed during player development to maximize the potential for elite performance and reduce the risk of injury.
Keywords: Athletic Performance, Training, Physical Fitnes
The Size and Strength Development in Elite Youth Ice Hockey Players
Background: Ice hockey is a fast, physical sport that requires high levels of muscular strength, muscular endurance and agility. Objectives: This study was conducted to create a profile including: anthropometric measurement, muscular strength, muscular endurance, lower body jump height and distance, and agility characteristics for elite youth hockey players. Methods: Pre-season off-ice testing results were retrospectively reviewed from a human performance database. Variables included height, weight, body fat percentage, grip strength, push-ups/bench press, supine rows, the plank test, vertical jump, standing long jump, hip adductor and abductor strength, and the 5-10-5 shuttle, and. One-way ANOVAs (1group x 4 time) and Tukeys post-hoc tests were performed to determine changes in the immediately successive age group (p0.05). Results: Participants included male Bantam-(age: 13-14) and Midget-(age: 15-17) AAA ice-hockey players (n=260). Age categories were grouped as 13 years old (yo)(n=75), 14 yo (n=70), 15 yo (n=58), and 16-17 yo (n=57). Increases between successive age groups were observed in the following variables: weight (13, 14, 15 and 16-17 yo), height (13 and 14 yo), left and right grip strength (13, 14, 15, and 16-17 yo), bench press (15 and 16-17 yo), left and right hip abduction (14, 15, and 16-17 yo), and vertical and standing long jump (13, 14, and 15 yo). Total time for the 5-10-5 shuttle run test decreased from 13 to 14yo, and 14 to 15 yo. Conclusion: Changes with age in off-ice performance variables of elite amateur hockey players should be recognized, followed, and addressed during player development to maximize the potential for elite performance and reduce the risk of injury. Keywords: Athletic Performance, Training, Physical Fitnes