11 research outputs found

    A review of the potential for rare earth element resources from European red muds: examples from SeydiÅŸehir, Turkey and Parnassus-Giona, Greece

    Get PDF
    Rare-earth elements (REE) are viewed as ‘critical metals’ due to a complex array of production and political issues, most notably a near monopoly in supply from China. Red mud, the waste product of the Bayer process that produces alumina from bauxite, represents a potential secondary resource of REE. Karst bauxite deposits represent the ideal source material for REE-enriched red mud as the conditions during formation of the bauxite allow for the retention of REE. The REE pass through the Bayer Process and are concentrated in the waste material. Millions of tonnes of red mud are currently stockpiled in onshore storage facilities across Europe, representing a potential REE resource. Red mud from two case study sites, one in Greece and the other in Turkey, has been found to contain an average of ∼1000 ppm total REE, with an enrichment of light over heavy REE. Although this is relatively low grade when compared with typical primary REE deposits (Mountain Pass and MountWeld up to 80,000 ppm), it is of interest because of the large volumes available, the cost benefits of reprocessing waste, and the low proportion of contained radioactive elements. This work shows that ∼12,000 tonnes of REE exist in red mud at the two case study areas alone, with much larger resources existing across Europe as a whole

    The importance of tectonic setting in assessing European Rare Earth potential

    Get PDF
    Rare earth element (REE) resources are commonly found associated with alkaline igneous complexes or carbonatites, or as secondary deposits derived from igneous rocks. Globally, many REE deposits occur around the margins of Archaean cratons, most in continental rift zones. Europe contains many such rift zones, which are generally younger in the south. Many of these rifts are intracontinental, whereas others are associated with the opening of oceans such as the Atlantic. All these rift systems have the potential to host REE resources, but whereas the older provinces of northern Europe are deeply exposed, exposures in southern Europe are largely at the supracrustal level. This paper considers how an understanding of the tectonic setting of Europe’s REE resources is vital to guide future exploration

    Comparison of Three Approaches for Bioleaching of Rare Earth Elements from Bauxite

    Get PDF
    Approximately 300 million tonnes of bauxite are processed annually, primarily to extract alumina, and can contain moderate rare earth element (REE) concentrations, which are critical to a green energy future. Three bioleaching techniques (organic acid, reductive and oxidative) were tested on three karst bauxites using either Aspergillus sp. (organic acid bioleaching) or Acidithiobacillus ferrooxidans (reductive and oxidative bioleaching). Recovery was highest in relation to middle REE (generally Nd to Gd), with maximum recovery of individual REE between 26.2% and 62.8%, depending on the bauxite sample. REE recovery occurred at low pH (generally < 3), as a result of organic acids produced by Aspergillus sp. or sulphuric acid present in A. ferrooxidans growth media. Acid production was seen when A. ferrooxidans was present. However, a clear increase in REE recovery in the presence of A. ferrooxidans (compared to the control) was only seen with one bauxite sample (clay-rich) and only under oxidative conditions. The complex and varied nature of REE-bearing minerals in bauxite provides multiple targets for bioleaching, and although the majority of recoverable REE can be leached by organic and inorganic acids, there is potential for enhanced recovery by bioleaching

    The Effect of X-ray Energy Overlaps on the Microanalysis of Chevkinite (Ce, La, Ca, Th)4(Fe2+, Mg)2(Ti, Fe3+)3Si4O22 Using SEM EDS-WDS

    Get PDF
    A light REE (LREE)-bearing mineral called chevkinite (Ce, La, Ca, Th)4(Fe2+, Mg)2(Ti, Fe3+)3Si4O22, originating from a heavy metal placer deposit Aksu Diamas in Turkey, previously assessed for potential REE extraction as a by-product of magnetite production, was studied using scanning electron microscopy with energy and wavelength-dispersive spectrometers (SEM EDS-WDS). This mineral exhibits analytical challenges associated with severe X-ray energy overlaps between the REE, titanium, and barium. Here, we present an iterative process, showing that SEM EDS-WDS is a viable technique for obtaining good quality quantitative data. SEM EDS-WDS is an in situ, non-destructive, and relatively non-expensive technique, but operator’s experience is essential to obtain good quality data. In cases where the peak fitting remains challenging, in particular, and where the constituents have large differences in abundance, an assessment of the X-ray spectrum to qualitatively assign all peaks is essential prior to quantitative analysi

    Volcanic-derived placers as a potential resource of Rare Earth Elements: the Aksu Diamas Case Study, Turkey

    Get PDF
    Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands. Fingerprinting of pyroxene, CGM, magnetite and zircon have identified the source of the placer as the nearby Gölcük alkaline volcanic complex, which has a history of eruption throughout the Plio-Quaternary. Heavy minerals were eroded from tephra and reworked into basinal sediments. This type of deposit may represent a potential resource of REE in other areas of alkaline volcanis

    Alkaline-Silicate REE-HFSE Systems

    Get PDF
    Development of renewable energy infrastructure requires critical raw materials, such as the rare earth elements (REEs, including scandium) and niobium, and is driving expansion and diversification in their supply chains. Although alternative sources are being explored, the majority of the world’s resources of these elements are found in alkaline-silicate rocks and carbonatites. These magmatic systems also represent major sources of fluorine and phosphorus. Exploration models for critical raw materials are comparatively less well developed than those for major and precious metals, such as iron, copper, and gold, where most of the mineral exploration industry continues to focus. The diversity of lithologic relationships and a complex nomenclature for many alkaline rock types represent further barriers to the exploration and exploitation of REE-high field strength element (HFSE) resources that will facilitate the green revolution. We used a global review of maps, cross sections, and geophysical, geochemical, and petrological observations from alkaline systems to inform our description of the alkaline-silicate REE + HFSE mineral system from continental scale (1,000s km) down to deposit scale (~1 km lateral). Continental-scale targeting criteria include a geodynamic trigger for low-degree mantle melting at high pressure and a mantle source enriched in REEs, volatile elements, and alkalies. At the province and district scales, targeting criteria relate to magmatic-system longevity and the conditions required for extensive fractional crystallization and the residual enrichment of the REEs and HFSEs. A compilation of maps and geophysical data were used to construct an interactive 3-D geologic model (25-km cube) that places mineralization within a depth and horizontal reference frame. It shows typical lithologic relationships surrounding orthomagmatic REE-Nb-Ta-Zr-Hf mineralization in layered agpaitic syenites, roof zone REE-Nb-Ta mineralization, and mineralization of REE-Nb-Zr associated with peralkaline granites and pegmatites. The resulting geologic model is presented together with recommended geophysical and geochemical approaches for exploration targeting, as well as mineral processing and environmental factors pertinent for the development of mineral resources hosted by alkaline-silicate magmatic systems

    Carbonatites and alkaline igneous rocks in post-collisional settings: storehouses of rare earth elements

    Get PDF
    The rare earth elements (REE) are critical raw materials for much of modern technology, particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition. Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn- to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralisation in syn- to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralisation in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralisation in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment

    Alkaline-Silicate REE-HFSE Systems

    Get PDF
    Development of renewable energy infrastructure requires critical raw materials, such as the rare earth elements (REEs, including scandium) and niobium, and is driving expansion and diversification in their supply chains. Although alternative sources are being explored, the majority of the world’s resources of these elements are found in alkaline-silicate rocks and carbonatites. These magmatic systems also represent major sources of fluorine and phosphorus. Exploration models for critical raw materials are comparatively less well developed than those for major and precious metals, such as iron, copper, and gold, where most of the mineral exploration industry continues to focus. The diversity of lithologic relationships and a complex nomenclature for many alkaline rock types represent further barriers to the exploration and exploitation of REE-high field strength element (HFSE) resources that will facilitate the green revolution. We used a global review of maps, cross sections, and geophysical, geochemical, and petrological observations from alkaline systems to inform our description of the alkaline-silicate REE + HFSE mineral system from continental scale (1,000s km) down to deposit scale (~1 km lateral). Continental-scale targeting criteria include a geodynamic trigger for low-degree mantle melting at high pressure and a mantle source enriched in REEs, volatile elements, and alkalies. At the province and district scales, targeting criteria relate to magmatic-system longevity and the conditions required for extensive fractional crystallization and the residual enrichment of the REEs and HFSEs. A compilation of maps and geophysical data were used to construct an interactive 3-D geologic model (25-km cube) that places mineralization within a depth and horizontal reference frame. It shows typical lithologic relationships surrounding orthomagmatic REE-Nb-Ta-Zr-Hf mineralization in layered agpaitic syenites, roof zone REE-Nb-Ta mineralization, and mineralization of REE-Nb-Zr associated with peralkaline granites and pegmatites. The resulting geologic model is presented together with recommended geophysical and geochemical approaches for exploration targeting, as well as mineral processing and environmental factors pertinent for the development of mineral resources hosted by alkaline-silicate magmatic systems
    corecore