120 research outputs found

    Improving the delivered power quality from WECS to the grid based on PMSG control model

    Get PDF
    Renewable energy has become one of the most energy resources nowadays, especially, wind energy. It is important to implement more analysis and develop new control algorithms due to the rapid changes in the wind generators size and the power electronics development in wind energy applications. This paper proposes a grid-connected wind energy conversion system (WECS) control scheme using permanent magnet synchronous generator (PMSG). The model works to improve the delivered power quality and maximize its value. The system contained one controller on the grid side converter (GSC) and two simulation packages used to simulate this model, which were PSIM software package for simulating power circuit and power electronics converters, and MATLAB software package for simulating the controller on Simulink. It employed a meta-heuristic technique to fulfil this target effectively. Mine-blast algorithm (MBA) and harmony search optimization technique (HSO) were applied to the proposed method to get the best controller coefficient to ensure maximum power to the grid and minimize the overshoot and the steady state error for the different control signals. The comparison between the results of the MBA and the HSO showed that the MBA gave better results with the proposed system

    Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes

    Get PDF
    Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under various conditions. Increasing Tp and/or Tm results in improving the kinetics and electrocatalytic activity of the proposed anodes towards the OER as demonstrated in the value of the onset potential of the OER and the OER currents recorded at a fixed potential. The morphology as well as the surface characterization of the prepared catalyst are reported herein and evaluated

    Efficient Catalytic Production Of Biodiesel Using Nano-sized Sugar Beet Agro-industrial Waste

    Get PDF
    This paper addresses the use of agro-industrial residue as a promising heterogeneous catalyst for the efficient production of biodiesel. That is, CaO-rich Sugarbeet agro-industrial waste (smashed down to nano-size) shows superb catalytic activity for biodiesel production via transesterification process employing sunflower oil and methanol. Physicochemical properties of the proposed catalyst are probed by TGA–DTG, XRF, XRD, FT-IR, SEM, BET, and CO2-TPD techniques. Biodiesel conversion (%) of Ca. 93% is achieved under the optimal conditions (catalyst loading of 1 wt%, methanol/oil molar ratio of 4.5:1, refluxed at 75 °C for 60 min). The relatively short reaction time indicates the enhanced kinetics of the process using the proposed agro-industrial residue which imparts its economic feasibility. Also, the proposed CaO-rich residue can be reused twice while retaining its catalytic activity. The thus-produced biodiesel fuel compiles the ASTM D6751 and EN-14214 specifications

    Metal oxide stabilized zirconia modified bio-derived carbon nanosheets as efficient electrocatalysts for oxygen evolution reaction

    Get PDF
    Abstract: Zirconia is a promising candidate for many applications, especially when stabilized with metal oxide nanoparticles such as yttria and ceria. Zirconium oxide-based materials supported on carbon nanomaterials have shown excellent performance electrocatalysts due to their outstanding catalytic activities and high stability. In this work, a one-pot hydrothermal method was used to prepare porous stabilized zirconia nanoparticles with yttria and ceria (YSZ and CSZ) anchored on carbon nanosheets derived from molasses fiber waste as a sustainable source and annealing at various temperatures (MCNSs). The prepared composites YSZ/MCNSs and CSZ/MCNSs exhibit superior oxygen evolution reaction performance in alkaline medium. Various physicochemical analysis techniques such as SEM, EDX, HR-TEM, BET, XRD and XPS are employed to characterize the designed catalysts. The results showed that the doping of molasses fibers exfoliated into 2D nanosheets controlled the growth of the YSZ particles into the nanosize and increased their crystallinity. This improves the electrochemical surface area and stability, and modulates the electronic structure of zirconium, yttrium and cerium which facilitate the adsorption of OH− ions, and all contribute to the higher catalytic activity. Graphical Abstract: [Figure not available: see fulltext.

    Extracorporeal Chloride Removal by Electrodialysis (CRe-ED): A Novel Approach to Correct Acidemia

    Get PDF
    RATIONALE: Acidemia is a severe condition among critically ill patients. Despite lack of evidence, sodium bicarbonate is frequently used to correct pH. However, its administration is burdened by several side effects. We hypothesized that the reduction of plasma chloride concentration could be an alternative strategy to correct acidemia. OBJECTIVES: To evaluate feasibility, safety, and effectiveness of a novel strategy to correct acidemia through Extracorporeal Chloride Removal by Electrodialysis (CRe-ED). METHODS: Ten swine (6 treatments, 4 controls) were sedated, mechanically ventilated and connected to an electrodialysis extracorporeal device capable of removing selectively chloride. In random order, an arterial pH of 7.15 was induced either through reduction of ventilation (respiratory acidosis) or through lactic acid infusion (metabolic acidosis). Acidosis was subsequently sustained for 12-14 hours. In treatment pigs, soon after reaching target acidemia, electrodialysis was started in order to restore pH. MEASUREMENTS AND MAIN RESULTS: During respiratory acidosis, electrodialysis reduced plasma chloride concentration by 26\ub15 mEq/L within 6 hours (final pH=7.36\ub10.04). Control animals exhibited incomplete and slower compensatory response to respiratory acidosis (final pH=7.29\ub10.03, p<0.001). During metabolic acidosis, electrodialysis reduced plasma chloride concentration by 15\ub13 mEq/L within 4 hours (final pH=7.34\ub10.07). No effective compensatory response occurred in controls (final pH=7.11\ub10.08; p<0.001). No complications occurred. CONCLUSIONS: We described the first in-vivo application of an extracorporeal system targeted to correct severe acidemia by lowering plasma chloride concentration. The CRe-ED proved to be feasible, safe, and effective. Further studies are warranted to assess its performance in presence of impaired respiratory and renal functions

    Oxygen reduction reaction features in neutral media on glassy carbon electrode functionalized by chemically prepared gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) were prepared by chemical route using 4 different protocols by varying reducer, stabilizing agent and solvent mixture. The obtained AuNPs were characterized by transmission electronic microscopy (TEM), UV-Visible and zeta potential measurements. From these latter surface charge densities were calculated to evidence the effect of the solvent mixture on AuNPs stability. The AuNPs were then deposited onto glassy carbon (GC) electrodes by drop-casting and the resulting deposits were characterized by cyclic voltammetry (CV) in H2SO4 and field emission gun scanning electron microscopy (FEG-SEM). The electrochemical kinetic parameters of the 4 different modified electrodes towards oxygen reduction reaction (ORR) in neutral NaCl-NaHCO3 media (0.15 M / 0.028 M, pH 7.4) were evaluated by rotating disk electrode voltammetry and subsequent Koutecky-Levich treatment. Contrary to what we previously obtained with electrodeposited AuNPs [Gotti et al., Electrochim. Acta 2014], the highest cathodic transfer coefficients were not obtained on the smallest particles, highlighting the influence of the stabilizing ligand together with the deposits morphology on the ORR kinetics
    • …
    corecore