369 research outputs found
Kernel Truncated Regression Representation for Robust Subspace Clustering
Subspace clustering aims to group data points into multiple clusters of which
each corresponds to one subspace. Most existing subspace clustering approaches
assume that input data lie on linear subspaces. In practice, however, this
assumption usually does not hold. To achieve nonlinear subspace clustering, we
propose a novel method, called kernel truncated regression representation. Our
method consists of the following four steps: 1) projecting the input data into
a hidden space, where each data point can be linearly represented by other data
points; 2) calculating the linear representation coefficients of the data
representations in the hidden space; 3) truncating the trivial coefficients to
achieve robustness and block-diagonality; and 4) executing the graph cutting
operation on the coefficient matrix by solving a graph Laplacian problem. Our
method has the advantages of a closed-form solution and the capacity of
clustering data points that lie on nonlinear subspaces. The first advantage
makes our method efficient in handling large-scale datasets, and the second one
enables the proposed method to conquer the nonlinear subspace clustering
challenge. Extensive experiments on six benchmarks demonstrate the
effectiveness and the efficiency of the proposed method in comparison with
current state-of-the-art approaches.Comment: 14 page
A Reduction in Video Gaming Time Produced a Decrease in Brain Activity
This study examines whether a decrease in brain development is observable after players have reduced their video gaming time over a period of 1 year. Both video gaming experts and non-experts were recruited, whose resting-state functional MRI (fMRI) data were collected at the beginning and the end of the study. Immediately after the first scan, the participants were instructed to spend no more than 3 h on video gaming weekly for 1 year. The results showed decreased self-reported video gaming skills and decreased amplitude of low-frequency fluctuation (ALFF) in the experts at the end of the study, demonstrating that a reduction in video gaming time over a period of 1 year produced a decrease in brain development. The non-experts served as a control group and had no significant changes. The findings support the adaptive effect of video gaming experience on brain and cognitive development
Neural activity dissociation between thought-based and perception-based response conflict
Based on the idea that intentions have different penetrability to perception and thought (Fodor, 1983), four Stroop-like tasks, AA, AW, WA, and WW are used, where the A represents an arrow and the CPPR (closest processing prior to response) is perception, and the W represents a word and the CPPR is thought. Event-related brain potentials were recorded as participants completed these tasks, and sLORETA (standardized low resolution brain electromagnetic tomography) was used to localize the sources at specific time points. These results showed that there is an interference effect in the AA and WA tasks, but not in the AW or WW tasks. The activated brain areas related to the interference effect in the AA task were the PFC and ACC, and PFC activation took place prior to ACC activation; but only PFC in WA task. Combined with previous results, a new neural mechanism of cognitive control is proposed
Music Composition from the Brain Signal: Representing the Mental State by Music
This paper proposes a method to translate human EEG into music, so as to represent mental state by music. The arousal levels of the brain mental state and music emotion are implicitly used as the bridge between the mind world and the music. The arousal level of the brain is based on the EEG features extracted mainly by wavelet analysis, and the music arousal level is related to the musical parameters such as pitch, tempo, rhythm, and tonality. While composing, some music principles (harmonics and structure) were taken into consideration. With EEGs during various sleep stages as an example, the music generated from them had different patterns of pitch, rhythm, and tonality. 35 volunteers listened to the music pieces, and significant difference in music arousal levels was found. It implied that different mental states may be identified by the corresponding music, and so the music from EEG may be a potential tool for EEG monitoring, biofeedback therapy, and so forth
Left hemisphere predominance of pilocarpine-induced rat epileptiform discharges
<p>Abstract</p> <p>Background</p> <p>The left cerebral hemisphere predominance in human focal epilepsy has been observed in a few studies, however, there is no related systematic study in epileptic animal on hemisphere predominance. The main goal of this paper is to observe if the epileptiform discharges (EDs) of Pilocarpine-induced epileptic rats could present difference between left hemisphere and right hemisphere or not.</p> <p>Methods</p> <p>The electrocorticogram (ECoG) and electrohippocampogram (EHG) from Pilocarpine-induced epileptic rats were recorded and analyzed using Synchronization likelihood (SL) in order to determine the synchronization relation between different brain regions, then visual check and cross-correlation analysis were adopted to evaluate if the EDs were originated more frequently from the left hemisphere than the right hemisphere.</p> <p>Results</p> <p>The data show that the synchronization between left-EHG and right-EHG, left-ECoG and left-EHG, right-ECoG and right-EHG, left-ECoG and right-ECoG, are significantly strengthened after the brain functional state transforms from non-epileptiform discharges to continuous-epileptiform discharges(p < 0.05). When the state transforms from continuous EDs to periodic EDs, the synchronization is significantly weakened between left-ECoG and left-EHG, left-EHG and right-EHG (p < 0.05). Visual check and the time delay (τ) based cross-correlation analysis finds that 10 out of 13 EDs have a left predominance (77%) and 3 out of 13 EDs are right predominance (23%).</p> <p>Conclusion</p> <p>The results suggest that the left hemisphere may be more prone to EDs in the Pilocarpine-induced rat epilepsy model and implicate that the left hemisphere might play an important role in epilepsy states transition.</p
- …