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Highlights

• We propose a novel robust subspace clustering method, termed kernel

truncated regression representation (KTRR). It can cluster the data points

drawn from multiple nonlinear subspaces.

• A closed-form solution to KTRR is provided. The solution or the proposed

model is a function of the kernel matrix and not directly related to the

input data. It makes our method very efficient, especially when handling

the problem that has high-dimensional input data.

• The proposed KTRR is further extended to handle large-scale data sets.

We transform the scalability issue in KTRR as a kind of out-of-sample

problem, and solve it with a “sampling, clustering, and classifying” strat-

egy.

• We apply the KTRR method for several image clustering problems. Ex-

tensive experiments are conducted to investigate the effectiveness and ef-

ficiency of KTRR. The empirical results show that our method signifi-

cantly outperforms current state-of-the-art subspace clustering algorithms

in terms of accuracy, robustness, and computational cost
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Abstract

Subspace clustering aims to group data points into multiple clusters of which

each corresponds to one subspace. Most existing subspace clustering approaches

assume that input data lie on linear subspaces. In practice, however, this as-

sumption usually does not hold. To achieve nonlinear subspace clustering, we

propose a novel method, called kernel truncated regression representation. Our

method consists of the following four steps: 1) projecting the input data into a

hidden space, where each data point can be linearly represented by other data

points; 2) calculating the linear representation coefficients of the data repre-

sentations in the hidden space; 3) truncating the trivial coefficients to achieve

robustness and block-diagonality; and 4) executing the graph cutting operation

on the coefficient matrix by solving a graph Laplacian problem. Our method

has the advantages of a closed-form solution and the capacity of clustering data

points that lie on nonlinear subspaces. The first advantage makes our method

efficient in handling large-scale datasets, and the second one enables the pro-

posed method to conquer the nonlinear subspace clustering challenge. Extensive

experiments on six benchmarks demonstrate the effectiveness and the efficiency

of the proposed method in comparison with current state-of-the-art approaches.
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1. Introduction

Subspace clustering is one of the most popular techniques for data analy-

sis, which has attracted increasing interests of researchers from various areas,

such as computer vision, image analysis, and signal processing [27]. With the

assumption that high-dimensional data are approximately drawn from a union

of low-dimensional subspaces, subspace clustering aims to seek a set of sub-

spaces to fit a given data set and performs clustering based on the identified

subspaces [39].

During the past decades, numerous approaches have been developed for

subspace clustering, which can be roughly classified into the following four

categories: iterative approaches [8], statistical approaches [34], algebraic ap-

proaches [40] and spectral clustering-based approaches [41, 48]. In recent years,

spectral clustering-based approaches have attracted more attention and achieved

state-of-the-art performance in image clustering and motion segmentation [49].

The key of this kind of approaches is to find a block-diagonal affinity matrix,

where the element of the matrix denotes the similarity between two correspond-

ing data points and the block-diagonal structure means that only the similarity

between two intra-cluster data points is nonzero.

To obtain a block-diagonal affinity matrix, some researchers proposed to

measure the similarity using the self-expression strategy in spectral clustering

methods. Specifically, they represent each data point as a linear combination

of the other points in the dataset itself and then use the representation coeffi-

cients to build the affinity matrix. The key difference among those methods is

the constraint conducted on the representation coefficients and/or the manner

of handling noises. For example, sparse subspace clustering (SSC) [7] assumes

that each data point can be linearly represented by fewest other points and

places the `1-norm minimisation constraint on the coefficient vectors. Low-rank
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representation (LRR) [22] encourages the coefficient matrix to be low rank for

capturing the global structure of the input database. To obtain the low rank-

ness, LRR enforces a nuclear-norm minimisation constraint on the coefficient

matrix. Different from SSC and LRR, least squares regression (LSR) [24] and

truncated regression representation (TRR) [32] take `2-norm instead of the `1-

norm and the nuclear-norm to constrain the representation coefficients. The

main difference between LSR and TRR is that TRR has a truncated operation

on the representation coefficient matrix. Most of these approaches handle the

noise by minimising the `1-/`2-norm of the reconstruction error. To handle the

complex noise, He et al. [11] proposed to maximise the correntropy between a

given data point and its reconstruction with other points, and Wang et al. [42]

proposed to minimise the entropy of the error between observation signal and its

estimation. In addition, Li et al. [20] proposed to exploit the intrinsic geometric

structure of data and the local and global structural consistencies over labels

to learn discriminative features. Kang et al. [15] proposed to remove the noise

and errors from the raw data adaptively using low-rank recovery and robust

principal component analysis to achieve robust graph learning. Furthermore,

from the point view of semi-supervised learning, [21] explores both the labelled

and unlabelled to explicitly learn the block-diagonal structure in a nonnegative

matrix factorization (NMF) framework. In recent years, some research works

are developed to achieve clustering on the large-scale datasets. For instance,

Peng et al. [33] extended SSC by using the sampling strategy. Kang et al. [17]

used a smaller graph to approximate the full graph adaptively by learning from

the raw data. These methods have shown promising performance in subspace

clustering.

Note that these subspace clustering methods are originally developed to han-

dle the data that are (approximately) drawn from a union of linear subspaces.

They may not be able to obtain a satisfactory clustering result when the input

data points lie on a set of nonlinear subspaces. In real-world systems, however,

most of the collected data are located on nonlinear subspaces [37, 16]. It brings

a challenge to linear subspace clustering methods and limits their applications
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Figure 1: The basic idea of our method. By projecting the data into another space with an

implicit nonlinear transformation, our method could solve the problem of nonlinear subspace

clustering. The left and right plots correspond to the data distributions in the input and

hidden space, respectively.

in the real world. Even though there are some deep learning-based clustering

approaches [29] are developed to tackle this challenge, they usually need a large

amount of data to be available and have high computational complexity, which

hinders their applications largely.

To cluster the data drawn from a union of nonlinear subspaces, in this paper,

we propose a novel robust subspace clustering method, termed kernel truncated

regression representation (KTRR). Our basic idea is based on the assumption

that there exists a hidden space in which the data can be linearly represented

by each other. To illustrate this simple but effective idea, we provide a toy

example in Fig. 1. From the example, we can see that the data points lie on

three curves in the input space so that they cannot be linearly represented with

each other directly. After a nonlinear transformation, these data points lie on

three lines in the hidden space and can be linearly represented by each other.

The proposed method consists of the following four steps: 1) projecting the

data from the input space into a hidden space in which the mapped data lie

on linear subspaces; 2) calculating the global self-expression of the whole data

set in the hidden space; 3) eliminating the impact of noise, such as Gaussian

noise, by zeroing trivial coefficients; 4) constructing a Laplacian graph using the
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obtained coefficients and solving a generalised Eigen-decomposition problem to

obtain the clustering membership with the algorithm of k-means.

The main contributions and novelty of this work can be summarised as

follows:

• We propose a new robust subspace clustering method, which can cluster

the data points drawn from multiple nonlinear subspaces. By exploiting

the kernel technique to transform the input samples into the hidden space,

we effectively tracked the challenge that TRR cannot handle the data lie

on nonlinear subspaces.

• A closed-form solution to KTRR is provided. The solution or the proposed

model is a function of the kernel matrix and not directly related to the

input data. It makes our method very efficient, especially when handling

the problem that has high-dimensional input data.

• The proposed KTRR is further extended to handle large-scale datasets.

We transform the scalability issue in KTRR as a kind of out-of-sample

problem, and solve it with a “sampling, clustering, and classifying” strat-

egy.

• We apply the KTRR method for several image clustering problems. Ex-

tensive experiments are conducted to investigate the effectiveness and ef-

ficiency of KTRR. The empirical results show that our method signifi-

cantly outperforms current state-of-the-art subspace clustering algorithms

in terms of accuracy, robustness, and computational cost.

The rest of this paper is organised as follows. Section 2 reviews the related

work. Section 3 is devoted to the formulation of kernel truncated regression

and the presentation of the proposed method. Section 4 reports the experimen-

tal results to evaluate the effectiveness and efficiency of the proposed method.

Section 5 concludes the paper.

Notations: In this paper, unless specified otherwise, lower-case bold let-

ters represent column vectors, upper-case bold letters represent matrices,
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and the entries of matrices are denoted with subscripts. For instance, v is a

column vector, vi is its ith entry. M is a matrix, mij is the entry in the ith row,

jth column, and mj denotes the jth column of M. Moreover, MT represents

the transpose of M, M−1 denotes the inverse matrix of M, and I stands for

the identity matrix. Table 1 summarises some notations used throughout the

paper.

Table 1: Some notations used in this paper

Notation Definition

m dimensionality of input data points

n number of input data points

L number of underlying subspaces

X ∈ Rm×n input data matrix

xi ∈ Rm vector of the ith column of X

Xi ∈ Rm×n dictionary matrix for the data point xi

κ(xi,xj) kernel function

K ∈ Rn×n kernel matrix of the input data matrix

φ: Rm → H mapping function from the input space to the kernel space

φ(xi) representation of xi in the kernel space

ci ∈ Rn representation coefficient vector for φ(xi)

C ∈ Rn×n linear representation coefficient matrix

W ∈ Rn×n similarity matrix of input data matrix

L ∈ Rn×n normalized Laplacian matrix

2. Related Work

In the past decades, a large number of spectral clustering-based methods

have been proposed to achieve subspace clustering in many applications, such as

image clustering, motion segmentation and gene expression analysis [7]. The key

of these methods is to obtain a block-diagonal similarity matrix whose nonzero
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elements are only located on the connections of the points from the same sub-

space. There are two common strategies to compute the similarity matrix,

i.e., pairwise distance-based strategy and linear representation-based strategy.

Pairwise distance-based strategy computes the similarity between two points

according to their pairwise relationship. For example, the original spectral clus-

tering method adopts the Euclidean distance with Heat Kernel to calculate the

similarity as

s(xi,xj) = e−
‖xi−xj‖2

2σ2 , (1)

where s(xi,xj) denotes the similarity between the data points xi and xj , and

the parameter σ controls the width of the neighborhoods.

Alternatively, linear representation-based approaches assume that each data

point can be represented by a linear combination of some other points from the

intra-subspace [7, 47, 46]. Based on this assumption, the linear representation

coefficient is used as a measurement of similarity. The linear representation-

based approaches have achieved promising performance in subspace cluster-

ing [7, 22, 32, 23] since they encode the global structure of the data set into the

representation coefficient matrix.

By given a data matrix X = [x1,x2, . . .xn] ∈ Rm×n, the representation-

based methods linearly represent X and obtain the coefficient matrix C ∈ Rn×n

in a self-expression manner by solving

min<(C) s.t. X = XC,diag(C) = 0, (2)

where diag(C) = 0 avoids the trivial solution that uses the data point to rep-

resent itself. <(C) denotes the adopted prior structured regularisation on C,

and the major difference among most existing subspace clustering methods is

the choice of <(C). For example, SSC [7] enforces the sparsity on the column

vectors of C by adopting `1-norm via <(C) =
∑n
i=1 ‖ci‖1, LRR [22] obtains

low rankness by using nuclear-norm with <(C) = ‖C‖∗. To further achieve

robustness, (2) is extended as follows:

min<(C) + ℘(E) s.t. X = XC + E,diag(C) = 0, (3)
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where E stands for the errors induced by the noise and corruption, ℘(E) mea-

sures the impact of the errors. Generally, ℘(·) = ‖E‖F and ℘(·) = ‖E‖1 are

used to handle the Gaussian noise and the Laplacian noise, respectively, and

‖ · ‖F denotes the Frobenius-norm of a matrix.

Due to the assumption of linear reconstruction, those methods failed to

achieve nonlinear subspaces clustering. To address this challenging issue, some

research have conducted few attempts [28, 43]. However, these methods are

computationally inefficient since they need to solve `1- or nuclear-norm min-

imisation problems. Some deep learning-based methods [49, 14, 29] are also

developed to learn nonlinear relationships. They usually need a large amount of

data available to explore the nonlinear relationships of the data and cost a lot

on computational resources. To address these issues, we propose a new nonlin-

ear subspace clustering method by integrating the kernel technique into linear

representation.

3. The proposed subspace clustering method

This section presents the details of our proposed method. Firstly, we in-

troduce the formulation and the optimisation procedure of KTRR. Then, we

illustrate how to use the representation coefficient matrix of KTRR to achieve

robust subspace clustering. Next, the computational complexity of the proposed

method is analysed. At last, an extension of KTRR is provided for handling

large-scale datasets.

3.1. Kernel Truncated Regression Representation

For a given data set {xi}ni=1, where xi ∈ Rm, we define a matrix X =

[x1,x2, . . .xn]. Let φ: Rm → H be a nonlinear mapping which transforms the in-

put data into a kernel spaceH, and φ(Xi) = [φ(x1), . . . , φ(xi−1),0, φ(xi+1), . . . , φ(xn)].

After mapping X into a kernel space, the corresponding {φ(xi)}ni=1 is generally

believed lying in multiple linear subspaces if an appropriate transforming func-

tion is selected [28, 43]. Based on this basic idea, we propose to formulate the
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objective function of our KTRR as follows:

min
ci

1

2
‖φ(xi)− φ(Xi)ci‖22 +

λ

2
‖ci‖22, (4)

where the first term is the reconstruction error in the kernel space, the second

term serves as an `2-norm regularization, and λ is a positive real number, which

controls the strength of the `2-norm regularization term.

For each transformed data representation φ(xi), solving the optimisation

problem (4), it gives that

c∗i =
(
φ(Xi)

Tφ(Xi) + λI
)−1

φ(Xi)
Tφ(xi). (5)

One can find that the solution in (5) does not require φ(xi) to be explicitly

computed. It only needs the dot products of the images of the data in the

hidden space. The dot products can sometimes be calculated more efficiently

as a direct function of the input data points, without explicitly performing the

mapping φ. In other words, the computation of the images in the hidden space

can be by-passed. A function that performs this direct computation is a kernel

function. For some choices of a kernel κ(xi,xj): Rm×Rm 7→ R, [38] has shown

that κ can obtain the dot product in the kernel space H induced by the mapping

φ.

For example, for a set of input data points {xi}ni=1 lie in a two-dimensional

space, we project these points into another space with the mapping function

φ : xi = (x1i, x2i)
T 7→ φ(xi) = (x21i, x

2
2i,
√

2x1ix2i)
T . (6)

The mapping function projects the data points from a two-dimensional space to

a three-dimensional space where the dot product of two images can be computed

as

φ(xi)
Tφ(xj) = (x21i, x

2
2i,
√

2x1ix2i)(x
2
1j , x

2
2j ,
√

2x1jx2j)
T

= x21ix
2
1j + x22ix

2
2j + 2x1ix2ix1jx2j

= (x1ix1j + x2ix2j)
2 = (xTi xj)

2.

(7)
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Therefore, the function κ(xi,xj) = (xTi xj)
2 is the kernel which can be used to

compute the dot products of the images corresponding to the above mapping

function φ in (8) without explicitly calculating the coordinates of their images.

Furthermore, the same kernel computes the dot product corresponding to the

following mapping function

φ : xi = (x1i, x2i)
T 7→ φ(xi) = (x21i, x

2
2i, x1ix2i, x2ix1i)

T , (8)

which demonstrates that the same kernel function may corresponding to several

different mapping functions [38]. In return, the mapping function is uniquely

corresponding to one kernel function. It helps us select a suitable kernel function

for the data being processed. Also, using the kernel technique to compute the

dot product of images has lower computational complexity by comparing with

computing the dot product with the explicitly mapping process. At last, there

is no need to change the formulation of our method in (4) to accommodate the

particular choice of kernel function. We can select any suitable kernel for the

data set being considered.

It is notable that it still requires O(n4 +mn2) to obtain the solution in (5)

for the problem of n data points with dimensionality of m. To solve the problem

in (4) more efficiently, we firstly rewrite it as

min
ci

1

2
‖φ(xi)− φ(X)ci‖22 +

λ

2
‖ci‖22, s.t. eTi ci = 0, (9)

where φ(X) = [φ(x1), φ(x2), . . . φ(xn)], ei is a column vector with all zero ele-

ments except the ith element is one, and the constraint eTi ci = 0 eliminates the

trivial solution of representing a transformed point by itself.

Using the Lagrangian method, we obtain that

L(ci) =
1

2
‖φ(xi)− φ(X)ci‖22 +

λ

2
‖ci‖22 + θeTi ci, (10)

where θ is the Lagrangian multiplier. Clearly,

∂L(ci)

∂ci
= (φ(X)Tφ(X) + λI)ci − φ(X)Tφ(xi) + θei. (11)
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Let ∂L(ci)
∂ci

= 0, we have

c∗i = (φ(X)Tφ(X) + λI)−1(φ(X)Tφ(xi)− θei). (12)

Multiplying eTi on both sides of (12), and since eTi ci = 0, it holds that

θ =
eTi (φ(X)Tφ(X) + λI)−1φ(X)Tφ(xi)

eTi (φ(X)Tφ(X) + λI)−1ei
. (13)

Substituting (13) into (12), the optimal solution is given as

c∗i = qi −P
eTi qiei
eTi Pei

, (14)

where qi = P(φ(X)Tφ(xi)), and P = (φ(X)Tφ(X) + λI)−1.

We can combine all the dot products as a matrix K ∈ RN×N whose elements

are calculated as

Kij = φ(xi)
Tφ(xj) = [φ(X)Tφ(X)]ij = κ(xi,xj), (15)

where φ(X) = [φ(x1), φ(x2), . . . φ(xn)]. The matrix K is the kernel matrix,

which is a symmetric and positive semidefinite matrix. Accordingly, (14) can

be rewritten as

c∗i = vi −U
eTi viei
eTi Uei

, (16)

where U = (K + λI)−1, vi = Uki, and ki is the ith column vector of K.

Note that only one pseudo-inverse operation is needed for solving the rep-

resentation problems of all data points. The computational complexity of cal-

culating the optimal solutions in (16) has decreased to O(n3 +mn2) for n data

points with m dimensions.

It has been proved that, under certain condition, the coefficients over intra-

subspace data points are larger than those over inter-subspace data points [32].

After representing the data set by the kernel matrix via (16), we handle the

errors by performing a hard thresholding Tη(·) over c∗i , where Tη(·) keeps η
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largest entries in ci and sets other entries as zeros, i.e.,

Tη(c∗i ) = [Tη(c∗1i), Tη(c∗2i), . . . , Tη(c∗ni)]
T (17)

and

Tη(c∗ji) =




c∗ji, if c∗ji ∈ Ωi;

0, otherwise,

(18)

where Ωi consists of the η largest elements of c∗i . Typically, the optimal η equals

to the dimensionality of corresponding kernel subspace, which can be estimated

by subspace learning approaches [30]. In this manner, it avoids to formulate the

impact of the noises into the optimisation problem explicitly and does not need

prior knowledge about the errors.

3.2. KTRR for Robust Subspace Clustering

In this section, we present the method to achieve subspace clustering by

incorporating KTRR into the spectral clustering framework [25].

For a given data set X, which consists of n data points in Rm, we assume

that these points lie on a union of L low-dimensional nonlinear subspaces. We

propose to transform the data points into a hidden space, in which the images

of these data points can be linearly represented by the images of the data points

from the intra-subspace. From (14), we find that the calculation of the represen-

tation coefficients does not require the transforming function in an explicit form,

but the dot products of the images are needed. We can induce a kernel function

to calculate these dot products and obtain the representation coefficients via

(16).

Moreover, the existence of the noises in the input dataset leads to some

error connections among the data points from different subspaces. We propose

to remove these errors through hard thresholding on each column vector of the

coefficient matrix C∗ via (17).

These representation coefficients can be seen as the similarities among the

input data points. The similarity between two intra-subspace data points is

large, and the similarity between two inter-subspace data points is zero or is

13

                  



approximately equal to zero. Therefore, we can build a similarity matrix W

based on the obtained coefficient matrix C∗ as

W = |(C∗)T |+ |C∗|. (19)

The matrix of W is symmetric and is suitable for integrating into the spectral

clustering framework.

Then, we compute the normalized Laplacian matrix by following [25]:

L = I−D−
1
2WD−

1
2 , (20)

where D is a diagonal matrix with dii =
∑n
j=1 wij . L is positive semi-definite

and has an eigenvalue equals zero with the eigenvector D
1
21 [41], where 1 =

[1, . . . , 1]T ∈ Rn.

Next, we calculate the first L eigenvectors y1,y2, . . . ,yL of L, which cor-

responding to its first L smallest nonzero eigenvalues, and construct a matrix

Y = [y1,y2, . . . ,yL] ∈ Rn×L.

Finally, we apply the k-means clustering algorithm to the matrix Y, by

treating each row vector of Y as a data point. In this way, we can cluster

the data into L groups and obtain the clustering membership. The proposed

subspace clustering algorithm is summarised in Algorithm 1.

3.3. Computational Complexity Analysis

Given a data matrix X ∈ Rm×n, KTRR takes O(mn2) to compute the kernel

matrix K. Then it takes O(n3) to obtain the matrix U, and O(mn2) to calculate

all the solutions in (16) with the matrices U and K. Finally, it requires O(ηlogη)

to find η largest coefficients in each column of the representation matrix C∗.

Putting these steps together, we obtain the computational complexity of KTRR

as O(mn2 + n3). This computational complexity is the same as that of TRR,

and is considerably less than that of KSSC (O(mn2+tn3))[28], KLRR(O(t(rX+

r)n2))[43], where t denotes the total number of iterations for the corresponding

algorithm, rX is the rank of X, and r is the rank for partial SVD at each

iteration of KLRR.
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Algorithm 1 Learning kernel truncated regression representation for robust

subspace clustering

Input: A given data set X ∈ Rm×n, the tradeoff parameter λ, the parameter

η, and the number of subspaces L.

Output: The clustering labels of the input data points.

1: Calculate the kernel matrix K and the matrix U in (16) and store them.

2: For each point xi ∈ Rm, calculate its linear representation coefficients in

the kernel space c∗i ∈ Rn via (16).

3: Remove trivial coefficients from c∗i by performing hard thresholding Tη(c∗i ),

i.e., keeping η largest entries in c∗i and zeroing all other elements.

4: Construct a symmetric similarity matrix via (19).

5: Calculate the normalised Laplacian matrix L via (20).

6: Compute the eigenvector matrix Y ∈ Rn×L that consists of the first L

normalised eigenvectors of L, corresponding to its L smallest nonzero eigen-

values.

7: Apply the k-means algorithm to cluster the rows of Y into L groups and

obtain the clustering membership.

3.4. Handling Large-Scale Data Sets with KTRR

From the above computational complexity analysis, we can see that even

KTRR is much faster than many existing subspace clustering methods, e.g.,

KLRR, KSSC, LRR, SSC. However, it is still unable to handle large-scale

datasets. Inspired by the strategy in [31], we extend KTRR to handle large-

scale datasets with the following three steps: 1) sampling, 2) clustering, and 3)

classification.

In the first step, it assumes that the sampled data subset and the whole data

set are independent and identically distributed (i.e., i.i.d.) so that the out-of-

sample data could be represented by the sampled data. This assumption is

general on which most of machine learning algorithms are based. In this paper,

we adopt a uniform random sampling approach to sample a subset of data from

the input data set. Then, we use the proposed KTRR to obtain the clustering

15

                  



membership of the sampled data. In the third step, we train a classifier with

the sampled data and the corresponding labels and classify the out-of-sample

data with the trained classifier.

For the classification of out-of-sample data, the adopted algorithm should be

capable of handling data that lie on nonlinear subspaces. We propose to take

a fully-connected three-layer (10 hidden units) feed-forward neural network to

achieve the classification task since it is easy to train and is potentially able to

handle data which lie on nonlinear subspaces. Some other deep neural networks

can also be used in this framework. A potential problem of adopting a deep

neural network is that when the dimension of input data is very high, a small

number of in-sample data may not be sufficient for learning the parameters

of the neural network. The procedure of the extended KTRR (EKTRR) is

summarised in Algorithm 2.

Algorithm 2 Clustering large-scale datasets with EKTRR

Input: A given data set X ∈ Rm×n, the tradeoff parameter λ, thresholding

parameter η, the number of sampled data points δ, and the number of

subspaces L.

Output: The clustering labels of the input data points.

1: Randomly select δ data columns from X as in-sample data matrix A. The

remaining samples are denoted as out-of-sample data Z = (z1, z2, . . . , zn−δ).

2: Perform KTRR (Algorithm 1) on A to obtain the cluster membership of A.

3: Train a feed-forward neural network with A and the corresponding labels.

4: Classify each out-of-sample data point in Z and obtain the cluster member-

ship of Z.

4. Experimental Study

In this section, we experimentally evaluate the performance of the proposed

method. We consider the results in terms of three aspects: 1) accuracy, 2)

robustness, and 3) computational cost. Robustness is evaluated by conducting
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experiments using samples with two different types of corruptions, i.e., Gaussian

noises and random pixel corruption.

4.1. Databases

Six popular image databases are used in our experiments, including Ex-

tended Yale Database B (ExYaleB) [19], Columbia Object Image Library (COIL20) [36],

Columbia Object Image Library (COIL100) [35], USPS [13], MNIST [18], and

Covtype [1]. We give the details of these databases as follows:

• The ExYaleB database contains 2, 414 frontal face images of 38 subjects

and around 64 near frontal images under different illuminations per indi-

vidual, where each image is manually cropped and normalised to the size

of 32× 32 pixels [2].

• The COIL20 and COIL100 databases contain 20 and 100 objects, respec-

tively. The images of each object were taken 5 degrees apart as the object

is rotated on a turntable and each object has 72 images. The size of each

image is 32× 32 pixels, with 256 grey levels per pixel [2].

• The USPS handwritten digit database1 includes ten classes (0 − 9 digit

characters) and 11,000 samples in total. We use a popular subset contains

9, 298 handwritten digit images for the experiments, and all of these images

are normalised to the size of 16× 16 pixels. In the experiment, we select

200 samples of each subject from the database randomly by following the

strategy in [4].

• The MNIST handwritten digit database includes ten classes (0 − 9 digit

characters) and 60, 000 samples in total. We use first 10, 000 handwritten

digit images of the training subset to conduct the experiments, and all of

these images are normalised to the size of 28×28 pixels. In the experiment,

1The USPS database and MNIST database used in this paper are download from http:

//www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
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we also select 200 samples of each subject from the database randomly to

evaluate the performance of different algorithms.

• The Covtype database is a large-scale database, which consists of 581, 012

samples of 7 subjects, and each sample has 54 attribute variables. This

database is developed to investigate the performance of algorithms on

predicting forest cover type from cartographic variables only (no remotely

sensed data). Independent variables were derived from data originally

obtained from the US Geological Survey (USGS) and USFS data. In the

experiments, we normalise the attribute values to the interval [0, 1].

4.2. Baselines and Evaluation Metrics

We compare KTRR2 with the state-of-the-art subspace clustering approaches,

including truncated regression representation (TRR) [32], two versions of least

squares regression (LSR1, LSR2) [24], kernel low-rank representation (KLRR) [43],

kernel sparse subspace clustering (KSSC) [28], Latent low-rank representation

(LatLRR) [23], low-rank representation with `1-norm (LRR1) [22], low-rank

representation with `21-norm (LRR2) [22], sparse subspace clustering (SSC) [7],

sparse manifold clustering and embedding (SMCE) [6], local subspace analy-

sis (LSA) [45], and standard spectral clustering (SC) [25], on four real-world

databases. To evaluate the performance of the extension of KTRR (EKTRR)

on large-scale set, we compare it with seven scalable clustering algorithms

(SSSC [33], SLRR [31], SLSR [31], KASP [44], Nyström [3], SEC [26], and

AKK [5]). Furthermore, we also compare the proposed method with currently

developed deep subspace clustering methods including deep adversarial subspace

clustering (DASC) [49], deep subspace clustering network with `2-norm regular-

ization on (DSC-Net-L2) [14], deep subspace clustering network with `1-norm

regularization on (DSC-Net-L1) [14], structured autoencoders (StructAE) [29],

and SSC with pre-trained convolutional autoencoder features (AE+SSC).

2The source code is available at https://liangli-zhen.github.io/code/KTRR.zip.

18

                  



Four popular metrics are adopted to evaluate the subspace clustering quality,

i.e., accuracy (AC) [4], normalized mutual information (NMI) [4], the adjusted

rand index (ARI) [12], and F-Score [10]. The values of these four metrics are

higher if the method works better. The values of these four metrics are equal

to 1 indicates the predict result is perfectly matching with the ground truth,

whereas 0 indicates totally mismatch.

4.3. Visualisation of Representation and Similarity Matrices

Before evaluating the clustering performance of the proposed method, we

demonstrate the visualisation results of the coefficient matrix of KTRR with the

Gaussian kernel and the obtained similarity matrix. We conduct the experiment

on the first 128 facial images of the ExYaleB database, in which the first 64

samples of which belong to the first subject, and the other 64 samples belong

to the second subject. We set the parameters as λ = 5 and η = 4. The

representation matrix C∗ in (16) and the constructed similarity matrix W in

(19) are shown in Fig. 2(a) and Fig. 2(b), respectively.

From Fig. 2(a), we can see that most of the non-zero elements are located

in the upper-left part and the bottom-right part, but there still exist some non-

zero elements in the upper-right part and the bottom-left part. That is to say,

the connections among the same subject are much stronger than that among

different subjects, while there still exist numbers of trivial connections among

the samples from different subjects since the samples from these subjects are all

facial images, which have some common characteristics.

It is well known that an ideal similarity matrix for the spectral clustering

algorithm is a block diagonal matrix, i.e., the connections should only exist

among the data points from the same cluster [22, 32, 28, 43], such that a hard

thresholding operation has been executed. From the result of the similarity

matrix W (in Fig. 2(b)), we find that:

• Most of the bright spots lie in the diagonal blocks of the similarity ma-

trix, i.e., the strong connections exist among the samples from the same

subject;
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(a) (b)

Figure 2: The visualisation of the representation matrix and the similarity matrix on 128

facial images. They belong to the first 2 subjects in ExYaleB database. (a) The representation

matrix in (16). (b) The similarity matrix obtained by our algorithm. The experiment was

carried out on the first two subjects of ExYaleB. The top rows and the right columns illustrate

some images of these two subjects. The dotted lines split each matrix into four parts. The

upper-left part: the similarity relationship among the 64 images of the first subject. The

bottom-right part: the similarity relationship among the 64 images of the second subject.

The upper-right part and the bottom-left part: the similarity relationship among the images

from different subjects. From the connection results, it is easy to find that most of the non-

zero elements are located in the upper-left part and the bottom-right part, which means that

our method reflects the relationships among the samples from different subjects very well.
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• Our method reveals the latent structure of data that these images belong

to two subjects. There exist only a few bright spots in the upper-right

part and the bottom-left part of the obtained similarity matrix, i.e., the

trivial connections among the samples from different subjects have been

mostly removed by using the thresholding processing;

• The obtained similarity matrix is a symmetric matrix, which can be di-

rectly used for subspace clustering under the framework of the spectral

clustering [25].

4.4. Different Kernel Functions

There are many kernel functions, and some of them are commonly used, e.g.,

polynomial kernels, radial basis functions, and sigmoid kernels. To investigate

the performance of the proposed method using different kernels, we study six

different kernel functions. We conduct the experiments on four databases, i.e.,

ExYaleB, COIL20, USPS and MINIST. The clustering performance with differ-

ent kernels are shown in Table 2, from which we have the following observations:

• The kernel function κ(xi,xj) = e−
‖xi−xj‖2

σ2 achieves the best performance

on ExYaleB and USPS, and obtains competitive performance compared

with the kernel functions κ(xi,xj) = (xTi xj)
2 and κ(xi,xj) = e−

‖xi−xj‖
σ

on COIL20 and MNIST, respectively.

• The performance of the proposed method with the kernel functions κ(xi,xj) =

(xTi xj)
3 and κ(xi,xj) = (xTi xj)

2 on ExYaleB is poor. It illustrates that

the facial images cannot be project into linear spaces with the mapping

function corresponding to these polynomial kernel functions.

• The performance of the proposed method with κ(xi,xj) = (xTi xj)
2 out-

performs κ(xi,xj) = (xTi xj)
3 on COIL20, which is different from that on

USPS. The same observation can be obtained on results with κ(xi,xj) =

e−
‖xi−xj‖

σ and κ(xi,xj) = e−
‖xi−xj‖2

σ2 . It is mainly caused by the fact that

the images from USPS lie in much higher nonlinear subspaces than those
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from the COIL20, and the functions κ(xi,xj) = (xTi xj)
3 and κ(xi,xj) =

e−
‖xi−xj‖2

σ2 induced a much more nonlinear mapping than κ(xi,xj) =

(xTi xj)
2 and κ(xi,xj) = e−

‖xi−xj‖
σ , respectively.

• The selection of different kernels results in a significant difference in the

subspace clustering performance both on these four databases.

Since the proposed method with Gaussian kernel can obtain promising per-

formance from the above experimental results, and it is also the most commonly

used kernel [38, 43], we adopt the Gaussian kernel function to compute the ker-

nel matrix for our method in the rest of the experiments.

4.5. Parameter Analysis

KTRR has two parameters, the tradeoff parameter λ and the parameter η.

The selection of the values of the parameters depends on the data distribution.

A bigger λ is suitable for highly corrupted databases, and η corresponds to the

dimensionality of the corresponding subspace for the mapped data points.

To evaluate the impact of λ and η, we conduct the experiment on the

ExYaleB and COIL20 databases. We set the λ from 10−5 to 102, and η from 1

to 50, the results are shown in Fig. 3 and Fig. 4.
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Figure 3: Clustering performance (mean of 50 runs) of the proposed method on the ExYaleB

database. (a) Clustering performance of the proposed method versus different values of λ

and η. (b) Clustering performance of the proposed method versus different values of λ under

η = 5. (c) Clustering performance of the proposed method versus different values of η under

λ = 0.5.

From the results, we have the following observations:
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Figure 4: Clustering performance (mean of 50 runs) of the proposed method on the COIL20

database. (a) Clustering performance of the proposed method versus different values of λ

and η. (b) Clustering performance of the proposed method versus different values of λ under

η = 4. (c) Clustering performance of the proposed method versus different values of η under

λ = 10.

• KTRR achieves the best clustering performance with λ and η as 0.1 and

5 on the ExYaleB database, and 10 and 4 on the COIL20 database, re-

spectively.

• KTRR can obtain satisfactory performance with λ from 0.1 to 1 on the

ExYaleB database, where the values of Accuracy, NMI, ARI, and F-Score

are more than 85%, 90%, 75%, and 75%, respectively, and with λ from

0.2 to 100 on the COIL20 database, where the Accuracy, NMI, ARI, and

F-Score are more than 80%, 90%, 80%, and 80%. The performance of

KTRR is not sensitive to the parameter of λ, which enables KTRR being

suitable for the real-world applications.

• The clustering quality with η from 3 to 10 on the ExYaleB and the

COIL20 databases are much better than other cases. It means that the

thresholding process is helpful to improve the performance of KTRR, and

the dimensions of the hidden subspaces of the ExYaleB and the COIL20

databases are in the 3 to 10 range.

4.6. Clustering Performance with Different Number of Subjects

In this subsection, we investigate the clustering performance of the proposed

method with a different number of subjects on the COIL100 image database.
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Figure 5: The clustering mean quality of the proposed method on the first t subjects of the

COIL100 database with 50 runs.

The experiments are carried out on the first t classes of the database, where t

increases from 10 to 100 with an interval of 10. The clustering results are shown

in Fig. 5, from which we can see that:

• In general, with the number of subjects increase, the clustering perfor-

mance is decreased since the clustering difficulty is increasing with the

number of subjects.

• With an increasing number of subjects, the NMI of KTRR is changed

slightly, varying from 100% to 90%. The potential reason is that the NMI

is robust to the data distribution (increasing subject number) [32].

• The proposed method obtains satisfactory performance on the COIL100

database. It achieves perfect clustering result for t = 10, and gets the

satisfactory performance at t = 100 with Accuracy, NMI, ARI, and F-

Score be around 74%, 90%, 68%, and 68%, respectively.

4.7. Comparison with Existing Methods on Clean Images

In this experiment, we compare KTRR with other 12 state-of-the-art ap-

proaches on four different benchmark databases, i.e., Extended Yale Database

B (ExYaleB) [19], Columbia Object Image Library (COIL20) [36], USPS [13],
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MNIST [18]. The performance comparisons on COIL100 and Covtype are not

provided here since several tested algorithms need a very long period of time

to obtain their results on these two databases. For a fair comparison, we use

the same spectral clustering framework [25] with different similarity matrices

obtained by the tested methods. According to the setting in [43], for all of the

kernel-based algorithms, we adopt the commonly-used Gaussian kernel on all

datasets and use the default bandwidth parameter which is set to the mean

of the distances between all the samples. For each dataset, we perform each

method 10 runs, in each run the k-means clustering step is repeated 500 times

and report the mean and the standard deviation of the used metrics. The clus-

tering results on the above four databases are shown in Table 3 - Table 6. The

best means for each database are highlighted in boldface. To have statistically

sound conclusions, the Wilcoxon’s rank sum test [9] at a 0.05 significance level is

adopted to test the significance of the differences between the results obtained

by the proposed method and all other algorithms. From the results, we can

obtain the following conclusions.

Table 3: Clustering performance (mean ± sd, %) comparisons of different methods on the

ExYaleB database. The best mean results in different metrics are in bold. The “†” indicates

that the value of the proposed method is significantly different from all other methods at a

0.05 level by the Wilcoxon’s rank sum test.

Methods AC NMI ARI F-Score

KTRR 84.82±5.75† 89.52±2.43† 77.09±5.84† 77.72±5.66†
TRR 67.04±2.93 72.20±2.61 41.07±6.91 43.01±6.52
LSR1 55.56±3.36 58.59±1.45 33.24±2.15 35.20±2.02
LSR2 51.07±4.45 54.03±2.59 25.42±2.41 27.78±2.24
KLRR 52.30±4.31 61.98±2.45 36.06±3.49 37.87±3.37
KSSC 58.41±3.19 64.41±1.10 32.40±5.82 34.59±5.38
LatLRR 51.40±3.36 54.41±1.76 27.10±2.26 29.33±2.07
LRR1 50.32±2.68 53.31±1.42 26.42±2.17 28.66±2.00
LRR2 49.80±4.72 53.26±2.22 25.63±2.70 27.93±2.52
SSC 52.87±5.46 58.02±3.44 24.20±4.74 26.83±4.34
SMCE 48.91±3.71 60.22±1.28 30.46±3.06 32.54±2.84
LSA 33.97±3.95 47.38±1.87 20.98±1.45 23.20±1.36
SC 19.69±1.70 32.96±1.54 10.16±1.01 12.56±0.98
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(1) Evaluation on the ExYaleB facial database

• The KTRR algorithm achieves the best results in the tests and gains a

significant improvement over TRR. The means of Accuracy, NMI, ARI,

and F-Score of KTRR are about 17%, 17%, 26% and 24% higher than

that of TRR, 32%, 28%, 41%, and 40% higher than that of KLRR.

• TRR [32] outperforms LSR1 [24] and LSR2 [24] with a considerable gap. It

means that the hard thresholding operator over the coefficient vectors has

a significant impact on the performance of TRR since the main difference

between them is that the former one has the hard thresholding step.

• All representation-based methods, i.e., KTRR, TRR [32], KLRR [43],

KSSC [28], LRR [22] and SSC [7], outperform the standard spectral clus-

tering method [25]. SC is failed due to some parts of the images from

different subjects are similar in ExYaleB.

• All the linear representation methods, i.e., TRR [32], LRR [22] and SSC [7],

are inferior to their kernel-based extensions, i.e., KTRR, KLRR [43], and

KSSC [28]. It means that the nonlinear representation methods are more

suitable to model the ExYaleB facial images.

(2) Evaluation on the COIL20 database

• The KTRR algorithm obtains the Accuracy of 90.25%, which is better

than all other tested methods. Specifically, the Accuracy of KTRR is

about 6.13% higher than that of the second best method TRR, and 10.96%

higher than that of the third best method KSSC.

• All the linear representation methods, i.e., TRR [32], LRR [22], and

SSC [7], are still inferior to their kernel-based extensions, i.e., KTRR,

KLRR [43], and KSSC [28]. Their non-linear versions obtain the Accu-

racy improvements of 6.13%, 0.68%, and 10%, respectively. It means the

images in COIL20 still lie in multiple nonlinear subspaces.
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Table 4: Clustering performance (mean ± sd, %) comparisons of different methods on the

COIL20 database. The best mean results in different metrics are in bold. The “†” indicates

that the value of the proposed method is significantly different from all other methods at a

0.05 level by the Wilcoxon’s rank sum test.

Methods AC NMI ARI F-Score

KTRR 90.25±6.13† 94.71±2.75† 88.04±5.49† 88.65±5.19†
TRR 84.12 ± 3.35 91.79 ± 0.94 80.72 ± 3.05 81.76 ± 2.80

LSR1 67.93±0.26 76.98±0.40 59.95±0.41 61.96±0.39
LSR2 67.24±0.30 75.75±0.23 58.53±0.17 60.62± 0.16

KLRR 68.66 ± 5.51 77.93 ± 3.24 61.96 ± 6.98 63.92 ± 6.55

KSSC 79.39 ± 8.15 89.50 ± 2.73 76.54 ± 7.13 77.81 ± 6.65

LatLRR 67.97 ± 3.47 76.78 ± 1.32 60.03 ± 2.42 62.03 ± 2.30

LRR1 67.94 ± 7.97 76.45 ± 2.20 60.03 ± 4.94 62.09 ± 4.66

LRR2 66.59 ± 3.35 75.33 ± 2.50 58.45 ± 4.21 60.57 ± 3.98

SSC 69.39 ± 5.93 80.61 ± 2.44 62.14 ± 5.18 64.17 ± 4.80

SMCE 76.51 ± 15.98 90.51 ± 5.69 75.20 ± 15.45 76.61 ± 14.41

LSA 72.86 ± 6.67 81.49 ± 3.69 68.13 ± 5.92 69.74 ± 5.57

SC 69.17 ± 3.81 79.43 ± 2.18 63.77 ± 3.88 65.60 ± 3.68

• KLRR, LatLRR and two types of LRR methods are all inferior to the

standard spectral method. It means that the mapped data of COIL20

cannot be represented by other mapped data with the low-rank constraint.

(3) Evaluation on the USPS handwriting database

• The KTRR algorithm achieves the best results in the tests. The value of

Accuracy of KTRR is about 21% higher than that of the TRR, 10% higher

than that of KLRR, and 6% higher than that of KSSC. The performance

results of KTRR on NMI, ARI, and F-Score are also higher than other

methods.

• All the linear representation methods, i.e., TRR [32], LRR [22], and

SSC [7], are inferior to their kernel-based extensions, i.e., KTRR, KLRR [43],

and KSSC [28]. The performance improvement is considerable, e.g., the

Accuracy value of KSSC is about 44% higher than that of SSC.

• SSC is inferior to LRR, while its kernel-based extension KSSC achieves

a good performance. The implicit transformation on the USPS images
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Table 5: Clustering performance (mean ± sd, %) comparisons of different methods on the

USPS handwriting database. The best mean results in different metrics are in bold. The

“†” indicates that the value of the proposed method is significantly different from all other

methods at a 0.05 level by the Wilcoxon’s rank sum test.

Methods AC NMI ARI F-Score

KTRR 81.36 ± 14.93† 78.04 ± 6.63† 71.73 ± 12.67† 74.69 ± 11.13†
TRR 67.98±14.18 71.72±6.59 59.76±12.36 64.17±10.61
LSR1 61.80±8.59 60.22±7.00 47.42±11.78 52.97±10.43
LSR2 62.54±9.76 61.37±4.38 48.57±8.29 53.99±7.28
KLRR 70.72 ± 2.63 66.23 ± 3.35 57.21 ± 3.76 61.64 ± 3.41

KSSC 75.17 ± 2.89 73.97 ± 2.41 65.11 ± 3.67 68.76 ± 3.28

LatLRR 70.97 ± 4.10 66.55 ± 4.37 57.20 ± 4.51 61.59 ± 4.11

LRR1 70.16 ± 4.29 66.69 ± 4.63 57.18 ± 4.79 61.58 ± 4.34

LRR2 70.91 ± 3.96 66.87 ± 4.35 57.50 ± 4.48 61.85 ± 4.08

SSC 26.86 ± 13.39 20.93 ± 13.44 9.95 ± 13.56 24.07 ± 7.62

SMCE 73.77 ± 7.85 71.29 ± 9.69 62.08 ± 13.10 66.10 ± 11.63

LSA 68.51 ± 8.95 64.80 ± 7.93 55.58 ± 9.00 60.30 ± 7.99

SC 70.79 ± 8.58 62.72 ± 4.55 53.55 ± 5.24 58.25 ± 4.67

makes the mapped data points to be much better represented with each

other in a sparse representation form. The performance of SSC is poor

on this database. It is mainly because the images in each group are not

sufficient, which makes SSC result in a wrong representation for the data

and suffer a low clustering accuracy.

(4) Evaluation on the MNIST handwriting database

• The proposed method KTRR achieves the best clustering result and ob-

tains a significant improvement of 31.78% at Accuracy on TRR. The in-

dexes NMI, ARI, and F-Score of KTRR are also higher than all other

tested methods.

• All the linear representation methods, i.e., TRR [32], LRR [22], and

SSC [7], are inferior to their kernel-based extensions, i.e., KTRR, KLRR [43],

and KSSC [28]. Especially, LRR results in poor performance on this

database, while its kernel-based version, KLRR, obtains much better clus-

tering quality regarding Accuracy, NMI, ARI, and F-Score. It demon-
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Table 6: Clustering performance (mean ± sd, %) comparisons of different methods on the

MNIST handwriting database. The best mean results in different metrics are in bold. The

“†” indicates that the value of the proposed method is significantly different from all other

methods at a 0.05 level by the Wilcoxon’s rank sum test.

Methods AC NMI ARI F-Score

KTRR 63.97 ± 8.11† 66.81 ± 4.43† 52.63 ± 5.04† 57.92 ± 4.16†
TRR 54.05±6.40 54.79±5.04 39.72±6.66 46.38±5.75
LSR1 50.87±4.90 45.70±4.09 32.92±3.44 39.78±3.12
LSR2 46.77±5.15 43.37±4.20 29.59±4.12 36.90±3.52
KLRR 61.31 ± 6.14 60.07 ± 5.86 47.46 ± 5.77 52.99 ± 4.92

KSSC 57.13 ± 15.57 59.43 ± 13.06 45.02 ± 16.11 50.99 ± 14.05

LatLRR 14.48 ± 8.37 4.04 ± 7.96 1.26 ± 4.47 18.13 ± 2.74

LRR1 18.08 ± 10.57 6.76 ± 11.18 2.80 ± 6.50 18.42 ± 4.13

LRR2 18.52 ± 12.34 7.53 ± 14.97 3.27 ± 8.64 18.43 ± 5.15

SSC 22.02 ± 20.53 14.58 ± 24.25 6.16 ± 16.06 21.67 ± 9.34

SMCE 61.66 ± 5.59 59.08 ± 3.99 46.81 ± 5.80 52.39 ± 5.05

LSA 63.03 ± 7.46 61.94 ± 5.78 49.50 ± 8.19 54.78 ± 7.28

SC 55.11 ± 5.45 48.80 ± 5.30 36.95 ± 5.62 43.38 ± 5.01

strates the advantage of the kernel-based methods when dealing with high-

dimensional data.

• KTRR, KLRR, SMCE and LSA achieve the best clustering results on the

MNIST handwriting images compared with other methods. However, the

performances of all the test methods are not well. A more suitable kernel

function may help these methods to get better performance on this type

of databases.

4.8. Comparison with Existing Methods on Corrupted Images

To evaluate the robustness of the proposed method, we conduct the exper-

iments on the first 10 subjects of the COIL20 database and ExYaleB database

respectively. All used images are corrupted by additive white Gaussian noises

or random pixel corruptions. Some corrupted image samples under different

levels of noises are as shown in Fig. 6. For additive Gaussian noises, we add

the noises with SNR = 10, 20, 30, 40, 50dB; For the random pixel corruptions,

we adopt the pepper & salt noises with the ratios of affected pixels being

5%, 10%, 15%, 20%, 25%.
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(a) (b)

Figure 6: (a) The corrupted samples with additive Gaussian noises under SNR equals

10, 20, 30, 40, 50 dB from left to right. (b) The corrupted samples with pepper and salt noises

under the ratio of affected pixels equals 5%, 10%, 15%, 20%, 25% from left to right.
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Figure 7: The clustering accuracy (mean of 50 runs) on images with different levels of additive

Gaussian noises. (a) The clustering accuracy on the ExYaleB database. (b) The clustering

accuracy on the COIL20 database.
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Figure 8: The clustering accuracy (mean of 50 runs) on images with different ratios of pepper

& salt corruptions. (a) The clustering accuracy on the ExYaleB database. (b) The clustering

accuracy on the COIL20 database.
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The clustering quality of the compared methods on the two databases with

Gaussian noises is shown in Fig. 7, from which we can get the following obser-

vations:

• The proposed KTRR is considerably more robust than other methods

under Gaussian noises. Specifically, KTRR obtains the Accuracy around

80% under SNR equals 10dB on COIL20, which is much higher than all

other tested algorithms, especially SC, LSA, LRR1, LRR2, LSR1, and

LSR2.

• Most of these spectral-based methods are relatively robust against Gaus-

sian noises. While the performance of LRR1, LRR2, and LatLRR are

sharply deteriorated on these two databases. The main reason may be

that the additional Gaussian noises have destroyed the underlie the low-

rank structure of the representation matrix.

• The accuracy of all tested methods on the COIL20 database is higher than

that on the ExYaleB database. It is consistent with the result of that on

clean images.

The clustering quality of the compared methods on the images with ran-

domly corruptions is shown in Fig. 8, from which we obtain that:

• The KTRR algorithm is robust to the random pixel corruptions on COIL20.

It achieves the best results under the ratio of affected pixels equals 5% to

15%. It obtains the Accuracy around 60% under the ratio of affected

pixels equals 25% on the COIL20 database, which is a very challenging

situation that we can see in Fig. 6. However, the Accuracy of KTRR drops

severely with the increase of the ratios of corrupted pixels, and lower than

that of SSC under 20% and 25% of corrupted pixels on ExYaleB. The per-

formance of SSC does not drops sharply, because SSC adopts a `1-norm

constraint to handle the salt & pepper corruptions.

• All the investigated methods perform not as well as the case with white

Gaussian noises. The result is consistent with a widely-accepted conclu-
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sion that non-additive corruptions are more challenging than additive ones

in pattern recognition. The pixel values of the images are changed greater

under the salt & pepper corruptions than that under the Gaussian noises.

• All of the algorithms perform much better on the COIL20 database than

on the ExYaleB database. The values of Accuracy of all algorithms are

lower than 40% on the ExYaleB database under 20% and 25% of corrupted

pixels. From Fig. 6, we find that most pixel values of the images from

the COIL20 database are close to 0 or 255. This leads to some of the

corruptions to be useless and weakens the impact to the final clustering

results.

4.9. Comparison of Computational Time Cost

Table 7: Computational time (seconds) comparison of different methods on the ExYaleB,

COIL20, USPS, and MNIST databases. The t1 and t2 denote the time cost on the similarity

graph construction process and the time cost on the whole clustering process of each method

respectively. The best mean results in different metrics are in bold.

Dataset
ExYaleB COIL20 USPS MNIST

t1 t2 t1 t2 t1 t2 t1 t2

KTRR 22.96 47.62 6.50 11.66 16.92 27.82 22.56 33.96

TRR 23.71 48.8 6.54 12.75 11.95 22.74 22.43 32.35

LSR1 0.44 91.24 0.19 14.53 0.32 16.29 0.35 17.54

LSR2 0.43 88.42 0.21 14.39 0.16 14.80 0.24 19.09

KLRR 45.82 71.26 16.11 25.55 29.41 39.93 34.20 44.64

KSSC 5512.68 5543.4 1466.12 1472.07 2752.97 2763.19 5742.89 5753.42

LatLRR 772.44 806.43 579.01 584.46 50.05 58.98 246.35 270.19

LRR1 248.94 286.91 430.23 436.59 43.34 51.88 155.70 167.25

LRR2 270.65 311.34 454.87 460.07 49.10 58.90 172.32 186.82

SSC 2301.75 2313.31 121.76 126.88 62.25 98.79 112.13 153.23

SMCE 10.15 45.18 5.76 10.12 67.44 76.50 16.78 25.52

LSA 198.48 229.26 61.14 66.01 108.67 120.46 142.71 154.64

SC 0.33 124.45 0.15 7.61 0.14 11.73 1.09 14.65

To investigate the efficiency of KTRR, we compare its computational time

with that of other 12 approaches on the clean images of four databases. The time

costs for building a similarity graph (t1) and the whole time cost for clustering

(t2) are recorded to evaluate the efficiency of compared methods.
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Table 7 shows the time costs of different methods with the parameters which

achieve their best results. We can see that:

• KTRR and TRR [32] are much faster than KSSC, SSC, KLRR, and LRR.

The results are consistent with the fact that the theocratical computation

complexities of KTRR and TRR are much lower than those of KSSC, SSC,

KLRR, and LRR methods. The KTRR and TRR algorithms both have

analytical solutions, and only one pseudo-inverse operation is required for

solving the representation problems of all data points for KTRR and TRR

algorithms.

• The standard SC [25] is the fastest since its similarity graph is computed

via the pairwise kernel distances among the input samples, and LSR1

and LSR2 also have a low time cost for the similarity graph construction.

KSSC [28] is the most time-consuming method. This implies that KSSC

cannot be used to handle large-scale databases directly.

• The time cost of the proposed method is very close to that of its linear

version TRR. Specifically, TRR is faster than KTRR on the ExYaleB

and the USPS databases, while it is slower than KTRR on the MNIST

database. They have similar time costs on the COIL20 database. The

Wilcoxon’s rank sum test [9] at a 0.05 significance level shows there is

no significant difference between the time costs of KTRR and TRR on

the similarity graph construction and the whole clustering process on the

tested four databases.

4.10. Comparison between KTRR and Deep Subspace Clustering Methods

The deep learning methods have achieved great success in numerous recog-

nition tasks. In this experiment, we compare the proposed methods with deep

subspace cluster methods. The comparison result3 on the COIL20 dataset is

shown in Fig. 9, from which we can see that KTRR outperforms AE+SSC in

3The results of DASC and StructAE are presented by their authors.
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Figure 9: The clustering performance comparison between our method and the deep learning-

based clustering methods on the COIL20 dataset.

terms of Accuracy and NMI. Even KTRR is inferior to DASC [49], DSC-Net-

L2 [14], DSC-Net-L1 [14] and StructAE [29] in terms of Accuracy, it achieves

competitive scores as these four deep subspace clustering methods in terms of

NMI. Note that deep learning-based methods perform well only when sufficiently

large amounts of data are available. This is a severe limitation in fields in which

obtaining such data is either difficult or expensive. KTRR does not need a large

number of data samples, and it has a closed-form solution, which costs much

less computational resources to obtain the final clustering results.

4.11. Comparison of Performance on Large-Scale Database

To evaluate the capability of handling large-scale data, we compare seven

peer algorithms on the Covtype database. Since the cost of computing the

values of ARI and F-Score on the large-scale database is extremely high, we

only report Accuracy, NMI, and the time cost of the tested algorithms in Table

8. From the results, we have the following observations:

• The extension of KTRR, EKTRR, outperforms the other algorithms. The

result of Accuracy of EKTRR is 11.01% higher than the second best

algorithm SSSC, and 15.34% higher than the second fastest algorithm

Nyström.
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• SLSR obtains the highest NMI value, but the NMI values obtained by

all the tested algorithms are very small. The metric NMI is not able to

distinguish the performance of the tested algorithms in this case.

• The time cost of our method is the lowest. It is at least two times faster

than other algorithms. This is due to the fact that our method uses the

in-sample data to train the neural network. Then, all other data are

classified by the trained network. This makes the proposed method very

competitive to handle large-scale databases. Some other

Table 8: Clustering performance (mean ± sd, %) and mean time cost (seconds) comparisons

of different methods on the Covtype database (581,012 samples). The best mean results in

different metrics are in bold. The “†” indicates that the value of the proposed method is

significantly different from all other methods at a 0.05 level by the Wilcoxon’s rank sum test.

Methods AC NMI Time

EKTRR 39.61±5.91† 5.19± 2.71† 16.50†
SSSC [31] 28.60±0.00 5.30 ± 0.00 135.62

SLSR [31] 26.45±0.00 7.14±0.00 119.78

SLRR [31] 27.23±0.03 3.65±0.02 122.85

KASP [44] 23.95±1.96 3.55±0.18 913.25

Nyström [3] 24.26±0.61 3.75±0.04 22.95

SEC [26] 21.05±0.01 3.64±0.01 32.05

AKK [5] 22.76±1.65 3.76±0.08 240.65

5. Conclusion

In this paper, we incorporated the kernel technique into the linear represen-

tation method to achieve robust nonlinear subspace clustering. It does not need

the prior knowledge about the structure of errors in the input data and remedies

the drawback of the existing TRR method that it cannot deal with the data

points from nonlinear subspaces. Moreover, through the theoretical analysis of

our proposed mathematical model, we found that the developed optimisation

problem can be solved analytically, and the closed-form solution is only depen-

dent on the kernel matrix. These advantages enable our proposed method being

potentially useful in many real-world applications. Comprehensive experiments
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on several real-world image databases have demonstrated the effectiveness and

efficiency of the proposed method.

In the future, we plan to conduct a systematical investigation on the selection

of optimal kernel for our proposed method and study how to determine the

number of nonlinear subspaces automatically.
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