2,103 research outputs found

    Lasant Materials for Blackbody-Pumped Lasers

    Get PDF
    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers

    Hud Hudson, FALLENNESS AND FLOURISHING

    Get PDF

    Green Glass for Orchestra

    Get PDF
    My thesis work, Green Glass, is a single movement piece for orchestra lasting 10\u2730. The piece consists of three main sections and explores spectral harmonies in combination with my own pitch material

    Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    Get PDF
    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts

    Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    Get PDF
    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg + 9Be reaction. The fragmentation reaction was simulated with the Constrained Molecular Dynamics model(CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at sub-saturation densities. Through comparison of these simulations with the experimental data constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive beam induced reactions

    A case–control study of incident rheumatological conditions following acute gastroenteritis during military deployment

    Get PDF
    Objectives The aim of this study was to assess the risk of incident rheumatological diagnoses (RD) associated with self-reported diarrhoea and vomiting during a first-time deployment to Iraq or Afghanistan. Such an association would provide evidence that RD in this population may include individuals with reactive arthritis (ReA) from deployment-related infectious gastroenteritis. Design This case–control epidemiological study used univariate and multivariate logistic regression to compare the odds of self-reported diarrhoea/vomiting among deployed US military personnel with incident RD to the odds of diarrhoea/vomiting among a control population. Setting We analysed health records of personnel deployed to Iraq or Afghanistan, including responses on a postdeployment health assessment and medical follow-up postdeployment. Participants Anonymous data were obtained from 891 US military personnel with at least 6 months of medical follow-up following a first-time deployment to Iraq or Afghanistan in 2008–2009. Cases were defined using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes; controls had an unrelated medical encounter and were representative of the study population. Main outcome measures The primary measure was an association between incident RD and self-reported diarrhoea/vomiting during deployment. A secondary measure was the overall incidence of RD in this population. Results We identified 98 cases of new onset RD, with a total incidence of 161/100 000 persons. Of those, two participants had been diagnosed with Reiter\u27s diseasei (3.3/100 000 persons) and the remainder with non-specific arthritis/arthralgia (157.5/100 000 persons). The OR for acute diarrhoea was 2.67 (p=0.03) after adjusting for important covariates. Conclusions Incident rheumatological conditions, even those classified as ‘non-specific,’ are significantly associated with prior severe diarrhoea in previously deployed military personnel, potentially indicating ReA and need for preventive measures to reduce diarrhoeagenic bacterial exposures in military personnel and other travellers to the developing regions

    Status of neutrino astronomy

    Full text link
    Astrophysical neutrinos can be produced in proton interactions of charged cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in balloon, satellite and air shower experiments every day, from below 1e9 eV up to macroscopic energies of 1e21 eV. The observation of different photon fields has been done ever since, today with detections ranging from radio wavelengths up to very high-energy photons in the TeV range. The leading question for neutrino astronomers is now which sources provide a combination of efficient proton acceleration with sufficiently high photon fields or baryonic targets at the same time in order to produce a neutrino flux that is high enough to exceed the background of atmospheric neutrinos. There are only two confirmed astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit and emitted neutrinos at MeV energies. The aim of large underground Cherenkov telescopes like IceCube and KM3NeT is the detection of neutrinos at energies above 100 GeV. In this paper, recent developments of neutrino flux modeling for the most promising extragalactic sources, gamma ray bursts and active galactic nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4 figures, 1 tabl
    • …
    corecore