69 research outputs found

    Near-Zero Index Photonic Crystals with Directive Bound States in the Continuum

    Full text link
    Near-zero-index platforms arise as a new opportunity for light manipulation with boosting of optical nonlinearities, transmission properties in waveguides and constant phase distribution. In addition, they represent a solution to impedance mismatch faced in photonic circuitry offering several applications in quantum photonics, communication and sensing. However, their realization is limited to availability of materials that could exhibit such low-index. For materials used in the visible and near-infrared wavelengths, the intrinsic losses annihilate most of near-zero index properties. The design of all-dielectric photonic crystals with specific electromagnetic modes overcame the issue of intrinsic losses while showing effective mode index near-zero. Nonetheless, these modes strongly radiate to the surrounding environment, greatly limiting the devices applications. Here, we explore a novel all-dielectric photonic crystal structure that is able to sustain effective near-zero-index modes coupled to directive bound-states in the continuum in order to decrease radiative losses, opening extraordinary opportunities for radiation manipulation in nanophotonic circuits. Moreover, its relatively simple design and phase stability facilitates integration and reproducibility with other photonic components

    Optical time reversal from time-dependent Epsilon-Near-Zero media

    Get PDF
    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time-variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realisation of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realises a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008)]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide (AZO). An incident probe beam is both negatively refracted and time-reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required e.g. for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies

    Nonlinearities and Carrier Dynamics in Refractory Plasmonic TiN Thin Films

    Get PDF
    Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated by slow thermal diffusion into the substrate lasting several hundred picoseconds. Ultrafast contributions arising from hot-electron excitations are found to be a small part of the overall response, only appearing significant in the TiN on fused silica at irradiance levels above 100 GW-cm-2. The modeling and origin of this response is discussed, and TiN is found to be adept at achieving ultrafast (below 1 ps) lattice heating which, combined with the robustness and low-cost of the material may prove useful in various thermo-optical applications such as local heating, heat-assisted processes, and nanoscale heat transfer

    Adiabatic frequency shifting in epsilon-near-zero materials:The role of group velocity

    Get PDF
    The conversion of a photon’s frequency has long been a key application area of nonlinear optics. It has been discussed how a slow temporal variation of a material’s refractive index can lead to the adiabatic frequency shift (AFS) of a pulse spectrum. Such a rigid spectral change has relevant technological implications, for example, in ultrafast signal processing. Here, we investigate the AFS process in epsilon-near-zero (ENZ) materials and show that the frequency shift can be achieved in a shorter length if operating in the vicinity of Re

    Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films

    Get PDF
    Optical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100–1500 nm) to generate a visible idler wave (530–620 nm). Experiments show enhancement of the frequency conversion efficiency with a maximum of 2% and a signal-to-pump detuning of 360 nm. Effective idler wavelength tuning has also been demonstrated by operating on the temporal delay between the pump and signal

    Optical absorption of hyperbolic metamaterial with stochastic surfaces

    Get PDF
    We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption of stochastically perturbed HMM compared to that of metal. (C) 2014 Optical Society of Americ
    • …
    corecore