1,036 research outputs found
The implementation and evaluation of oral health in-service education at three elderly care facilities
PLEASE NOTE: This work is protected by copyright. Downloading is restricted to the BU community: please click Download and log in with a valid BU account to access. If you are the author of this work and would like to make it publicly available, please contact [email protected] bibliographical references: (leaves 34-36).Thesis (M.Sc.)--Boston University, Henry M. Goldman School of Graduate Dentistry, 1984 (Dental Public Health).The goals of this project were to improve the oral health care provided to patients at three selected elderly-care facilities. The lack of oral care among the institutionalized elderly has been well-documented. The nursing staff assistants are the key people responsible for patient hygiene maintenance care, but lack the knowledge and training in oral care. With strong administrative support, a series of oral health in-service sessions for nursing personnel were conducted. The objectives of this program were: 1) to promote quality dental care; 2) to increase staff dental awareness; and 3) to assist in the implementation of oral hygiene maintenance programs at each facility as an integral part of patient daily living skills.
The effectiveness of the in-service training in terms of cognitive gains was assessed by administering a pretest-posttest instrument (which consisted of 20 close-ended items) to determine the presence of oral health care knowledge in each group. Analysis of variance of pretest-posttest scores indicated that an overall increase in cognitive levels had occurred following the in-service at each site. However, the cognitive gains were not significantly different among the sites. In addition, a student's tÂtest was performed on pretest-posttest scores at each site which indicated that significant increases in cognitive awareness had occurred at each site
Non-invasive brain stimulation techniques for chronic pain (Review)
Background: This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE).
Objectives: To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain.
Search methods: For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017.
Selection criteria: Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months’ duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events.
Data collection and analysis: Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three ’Summary of findings’ tables.
Main results: We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.
rTMS: Meta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to \u3c 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).
CES: For CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).
tDCS: Analysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).
Adverse events: All forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events.
Authors’ conclusions: There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results
Implementing peer review at an emergency medicine blog: bridging the gap between educators and clinical experts
ABSTRACTEmergency physicians are leaders in the "free open-access meducation" (FOAM) movement. The mandate of FOAM is to create open-access education and knowledge translation resources for trainees and practicing physicians (e.g., blogs, podcasts, and vodcasts). Critics of FOAM have suggested that because such resources can be easily published online without quality control mechanisms, unreviewed FOAM resources may be erroneous or biased. We present a new initiative to incorporate open, expert, peer review into an established academic medical blog. Experts provided either pre- or postpublication reviews that were visible to blog readers. This article outlines the details of this initiative and discusses the potentially transformative impact of this educational innovation
Prehypertension and Endothelial Progenitor Cell Function.
Prehypertension is associated with significant damage to the coronary vasculature and increased rates of adverse cardiovascular events. Circulating endothelial progenitor cells (EPCs) are critical to vascular repair and the formation of new blood vessels. We tested the hypothesis that prehypertension is associated with EPC dysfunction. Peripheral blood samples were collected from 83 middle-aged and older adults (51 M/32 F): 40 normotensive (age 53±2 yr; BP 111/74±1/1 mmHg) and 43 prehypertensive (54±2; 128/77±1/1 mmHg). EPCs were isolated from peripheral blood and EPC colony-forming capacity (colony-forming unit assay), migratory activity (Boyden chamber) and apoptotic susceptibility (active caspase-3 concentrations) were determined. There were no significant differences in either the number of EPC CFUs (10±2 vs. 9±1), EPC migration (1165±82 vs. 1120±84 fluorescent units), or active intracellular caspase-3 concentrations (2.7±0.3 vs. 2.3±0.2 ng/mL) between the normotensive and prehypertensive groups. When groups were stratified into low prehypertension (n=27; systolic BP: 120–129 mmHg) and high prehypertension (n=16; 130–139 mmHg), it was found that EPCs from the high prehypertensive group produced fewer (~65%, P\u3c0.05) CFUs compared with the low prehypertensive (4±1 vs. 12±2) and normotensive adults. In conclusion, EPC colonyforming capacity is impaired only in prehypertensive adults with systolic BP greater than 130 mmHg. Prehypertension is not associated with migratory dysfunction or enhanced apoptosis of EPCs
- …