1,173 research outputs found

    The Burst Mode of Accretion in Primordial Star Formation

    Full text link
    We present simulation results for the formation and long-term evolution of a primordial protostellar disk harbored by a first star. Using a 2+1D nonaxisymmetric thin disk numerical simulation, together with a barotropic relation for the gas, we are able to probe ~20 kyr of the disk's evolution. During this time period we observe fragmentation leading to loosely bound gaseous clumps within the disk. These are then torqued inward and accreted onto the growing protostar, giving rise to a burst phenomenon. The luminous feedback produced by this mechanism may have important consequences for the subsequent growth of the protostar.Comment: 3 pages, 2 figures, to appear in proceedings of First Stars IV meeting (Kyoto, Japan; 2012

    The Ejection of Low Mass Clumps During Star Formation

    Full text link
    Modeling of the self-consistent formation and evolution of disks as a result of prestellar core collapse reveals an intense early phase of recurrent gravitational instability and clump formation. These clumps generally migrate inward due to gravitational interaction with trailing spiral arms, and can be absorbed into the central object. However, in situations of multiple clump formation, gravitational scattering of clumps can result in the ejection of a low mass clump. These clumps can then give rise to free-floating low mass stars, brown dwarfs, or even giant planets. Detailed modeling of this process in the context of present-day star formation reveals that these clumps start out essentially as Larson first cores and grow subsequently by accretion. In the context of Pop III star formation, preliminary indications are that the disk clumps may also be of low mass. This mechanism of clump formation and possible ejection provides a channel for the formation of low mass objects in the first generation of stars.Comment: 4 pages, 2 figures, to appear in proceedings of First Stars IV meeting (Kyoto, Japan; 2012

    Observational Signatures from Self-Gravitating Protostellar Disks

    Get PDF
    Protostellar disks are the ubiquitous corollary outcome of the angular momentum conserving, gravitational collapse of molecular cloud cores into stars. Disks are an essential component of the star formation process, mediating the accretion of material onto the protostar, and for redistributing excess angular momentum during the collapse. We present a model to explain the observed correlation between mass accretion rates and stellar mass that has been inferred from observations of intermediate to upper mass T Tauri stars. We explain this correlation within the framework of gravitationally driven torques parameterized in terms of Toomre’s Q criterion. Our models reproduce both the observed correlation and spread in the accretion rate--protostellar mass relation, as has been observed for protostars with masses of 0.2 \u3c M \u3c 3.0 solar masses, such as those found in the Rho Ophiuchus and Taurus star forming regions. We also examine the formation and long-term evolution of primordial protostellar disks harbored by the first stars (Population III stars), using 2+1D numerical hydrodynamics simulations in the thin-disk limit. The disks that form in the primordial environment are very massive and subject to vigorous fragmentation. Fragments torqued inward due to gravitational inter- actions with sub-structure within the disk give rise to accretion and luminosity bursts several orders of magnitude above the mean rate---the first evidence for the burst mode of accretion among Population III stars. By considering the cosmological landscape in this epoch, we argue from the Jeans criterion for the existence of clusters of Population III stars. A simultaneity of burst mode accretion events among several cluster members results in fluctuations that are nearly 1000 times greater than the mean cluster luminosity, approaching 109 solar luminosity. This phenomenon arises solely as a result of the gravitational-instability--driven episodic fragmentation and accretion that characterizes this early stage of protostellar evolution. We speculate as to how these extrema may provide a window through which next-generation telescopes will be able to gather observational evidence for the existence of the first stars

    Criminal Procedure - Parretti v. United States

    Get PDF
    In Parretti v. United States, the United States Court of Appeals for the Ninth Circuit, sitting en banc, addressed two constitutional claims: (1) whether Giancarlo Parretti\u27s arrest pursuant to an Extradition Treaty with France violated the Fourth Amendment; and (2) whether his detention without bail prior to the French government\u27s request for his extradition violated the Due Process Clause of the Fifth Amendment. The en banc court refused to address these issues, however, claiming that since Parretti fled the United States while his appeal was pending, he was a fugitive from justice. The en banc court therefore dismissed his appeal under the fugitive disentitlement doctrine

    Criminal Procedure - Parretti v. United States

    Get PDF
    In Parretti v. United States, the United States Court of Appeals for the Ninth Circuit, sitting en banc, addressed two constitutional claims: (1) whether Giancarlo Parretti\u27s arrest pursuant to an Extradition Treaty with France violated the Fourth Amendment; and (2) whether his detention without bail prior to the French government\u27s request for his extradition violated the Due Process Clause of the Fifth Amendment. The en banc court refused to address these issues, however, claiming that since Parretti fled the United States while his appeal was pending, he was a fugitive from justice. The en banc court therefore dismissed his appeal under the fugitive disentitlement doctrine

    Economic resilience and crowdsourcing platforms

    Get PDF
    The increased interdependence and complexity of modern societies have increased the need to involve all members of a community into solving problems. In times of great uncertainty, when communities face threats of different kinds and magnitudes, the traditional top-down approach where government provides solely for community wellbeing is no longer plausible. Crowdsourcing has emerged as an effective means of empowering communities with the potential to engage individuals in innovation, self-organization activities, informal learning, mutual support, and political action that can all lead to resilience. However, there remains limited resource on the topic. In this paper, we outline the various forms of crowdsourcing, economic and community resilience, crowdsourcing and economic resilience, and a case study of the Nepal earthquake. his article presents an exploratory perspective on the link can be found between crowdsourcing and economic resilience. It introduces and describes a framework that can be used to study the impact of crowdsourcing initiatives for economic resilience by future research. An initial a set of indicators to be used to measure the change in the level of resilience is presented.info:eu-repo/semantics/publishedVersio

    Non-invasive brain stimulation techniques for chronic pain (Review)

    Get PDF
    Background: This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). Objectives: To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. Search methods: For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. Selection criteria: Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months’ duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. Data collection and analysis: Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three ’Summary of findings’ tables. Main results: We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision. rTMS: Meta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to \u3c 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence). CES: For CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence). tDCS: Analysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence). Adverse events: All forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. Authors’ conclusions: There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results
    • …
    corecore