1,173 research outputs found

    On the scaling behaviour of cross-tie domain wall structures in patterned NiFe elements

    Full text link
    The cross-tie domain wall structure in micrometre and sub-micrometre wide patterned elements of NiFe, and a thickness range of 30 to 70nm, has been studied by Lorentz microscopy. Whilst the basic geometry of the cross-tie repeat units remains unchanged, their density increases when the cross-tie length is constrained to be smaller than the value associated with a continuous film. This occurs when element widths are sufficiently narrow or when the wall is forced to move close to an edge under the action of an applied field. To a very good approximation the cross-tie density scales with the inverse of the distance between the main wall and the element edge. The experiments show that in confined structures, the wall constantly modifies its form and that the need to generate, and subsequently annihilate, extra vortex/anti-vortex pairs constitutes an additional source of hysteresis.Comment: 4 pages, 5 figures, accepted for publication in Europhysics Letters (EPL

    Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates

    Get PDF
    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.National Institutes of Health (U.S.) (Grant NIH 2R44NS070453-03A1)National Institutes of Health (U.S.) (Grant NIH EY017292

    FEF inactivation with improved optogenetic methods

    Get PDF
    Optogenetic methods have been highly effective for suppressing neural activity and modulating behavior in rodents, but effects have been much smaller in primates, which have much larger brains. Here, we present a suite of technologies to use optogenetics effectively in primates and apply these tools to a classic question in oculomotor control. First, we measured light absorption and heat propagation in vivo, optimized the conditions for using the red-light–shifted halorhodopsin Jaws in primates, and developed a large-volume illuminator to maximize light delivery with minimal heating and tissue displacement. Together, these advances allowed for nearly universal neuronal inactivation across more than 10 mm³ of the cortex. Using these tools, we demonstrated large behavioral changes (i.e., up to several fold increases in error rate) with relatively low light power densities (≤100 mW/mm²) in the frontal eye field (FEF). Pharmacological inactivation studies have shown that the FEF is critical for executing saccades to remembered locations. FEF neurons increase their firing rate during the three epochs of the memory-guided saccade task: visual stimulus presentation, the delay interval, and motor preparation. It is unclear from earlier work, however, whether FEF activity during each epoch is necessary for memory-guided saccade execution. By harnessing the temporal specificity of optogenetics, we found that FEF contributes to memory-guided eye movements during every epoch of the memory-guided saccade task (the visual, delay, and motor periods).United States. National Institutes of Health (2R44NS070453-03A1)United States. National Institutes of Health (EY017292

    When Anomaly Mediation is UV Sensitive

    Full text link
    Despite its successes---such as solving the supersymmetric flavor problem---anomaly mediated supersymmetry breaking is untenable because of its prediction of tachyonic sleptons. An appealing solution to this problem was proposed by Pomarol and Rattazzi where a threshold controlled by a light field deflects the anomaly mediated supersymmetry breaking trajectory, thus evading tachyonic sleptons. In this paper we examine an alternate class of deflection models where the non-supersymmetric threshold is accompanied by a heavy, instead of light, singlet. The low energy form of this model is the so-called extended anomaly mediation proposed by Nelson and Weiner, but with potential for a much higher deflection threshold. The existence of this high deflection threshold implies that the space of anomaly mediated supersymmetry breaking deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP

    Homogenization in magnetic-shape-memory polymer composites

    Full text link
    Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a large change of shape to the presence of an external magnetic field. As an alternative for the difficult to manifacture single crystal of these alloys we study composite materials in which small magnetic-shape-memory particles are embedded in a polymer matrix. The macroscopic properties of the composite depend strongly on the geometry of the microstructure and on the characteristics of the particles and the polymer. We present a variational model based on micromagnetism and elasticity, and derive via homogenization an effective macroscopic model under the assumption that the microstructure is periodic. We then study numerically the resulting cell problem, and discuss the effect of the microstructure on the macroscopic material behavior. Our results may be used to optimize the shape of the particles and the microstructure.Comment: 17 pages, 4 figure

    Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma

    Get PDF
    Drug delivery to pancreatic tumors is impaired by a unique desmoplastic response and poor tumor vascularization. A drug delivery device capable of overcoming these barriers could provide substantial benefit for patients with pancreatic cancer. In this study, we show that local iontophoretic delivery of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) resulted in better tumor response and tolerability compared with i.v. FOLFIRINOX. Given the low systemic exposure of FOLFIRINOX using iontophoretic delivery, it may be possible to use in combination with systemic delivery to treat micrometastatic disease. Local iontophoretic delivery of cytotoxic agents should be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer

    (De)Constructing a Natural and Flavorful Supersymmetric Standard Model

    Full text link
    Using the framework of deconstruction, we construct simple, weakly-coupled supersymmetric models that explain the Standard Model flavor hierarchy and produce a flavorful soft spectrum compatible with precision limits. Electroweak symmetry breaking is fully natural; the mu-term is dynamically generated with no B mu-problem and the Higgs mass is easily raised above LEP limits without reliance on large radiative corrections. These models possess the distinctive spectrum of superpartners characteristic of "effective supersymmetry": the third generation superpartners tend to be light, while the rest of the scalars are heavy.Comment: 36 pages, 4 figures ; v2: references added, expanded discussion of FCNC

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity

    Get PDF
    We define a class of deformations in W^1,p(\u3a9,R^n), p>n 121, with positive Jacobian that do not exhibit cavitation. We characterize that class in terms of the non-negativity of the topological degree and the equality between the distributional determinant and the pointwise determinant of the gradient. Maps in this class are shown to satisfy a property of weak monotonicity, and, as a consequence, they enjoy an extra degree of regularity. We also prove that these deformations are locally invertible; moreover, the neighbourhood of invertibility is stable along a weak convergent sequence in W^1,p, and the sequence of local inverses converges to the local inverse. We use those features to show weak lower semicontinuity of functionals defined in the deformed configuration and functionals involving composition of maps. We apply those results to prove existence of minimizers in some models for nematic elastomers and magnetoelasticity

    Emotion based attentional priority for storage in visual short-term memory

    Get PDF
    A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as ‘emotional superiority’). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands
    corecore