34 research outputs found

    Creating an Employee Friendly Environment: Lessons for Public and Private Sector Managers

    Get PDF

    Automated group assignment in large phylogenetic trees using GRUNT: GRouping, Ungrouping, Naming Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate taxonomy is best maintained if species are arranged as hierarchical groups in phylogenetic trees. This is especially important as trees grow larger as a consequence of a rapidly expanding sequence database. Hierarchical group names are typically manually assigned in trees, an approach that becomes unfeasible for very large topologies.</p> <p>Results</p> <p>We have developed an automated iterative procedure for delineating stable (monophyletic) hierarchical groups to large (or small) trees and naming those groups according to a set of sequentially applied rules. In addition, we have created an associated ungrouping tool for removing existing groups that do not meet user-defined criteria (such as monophyly). The procedure is implemented in a program called GRUNT (GRouping, Ungrouping, Naming Tool) and has been applied to the current release of the Greengenes (Hugenholtz) 16S rRNA gene taxonomy comprising more than 130,000 taxa.</p> <p>Conclusion</p> <p>GRUNT will facilitate researchers requiring comprehensive hierarchical grouping of large tree topologies in, for example, database curation, microarray design and pangenome assignments. The application is available at the greengenes website <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    The Fiscal Consequences of Electoral Institutions

    Full text link

    Number of newly defined groups when iterating minimum group size (mC) from 1000 to 5 in decrements of 5 for four minimum branch lengths (mL)

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Automated group assignment in large phylogenetic trees using GRUNT: GRouping, Ungrouping, Naming Tool"</p><p>http://www.biomedcentral.com/1471-2105/8/402</p><p>BMC Bioinformatics 2007;8():402-402.</p><p>Published online 18 Oct 2007</p><p>PMCID:PMC2228325.</p><p></p> Only groups from 150 to 5 are shown for clarity. A non-linear scale is used for the Y-axis to highlight differences in assignments for large groups (missing data points mean that no groups were assigned for that iteration). The total number of defined groups for these settings was 4197, 1582, 699 and 356 for 0.01, 0.02, 0.03 and 0.04 respectively. The default mL setting for grouping is 0.02 (boxed)
    corecore