190 research outputs found

    Structural Reorganization of Parallel Actin Bundles by Crosslinking Proteins: Incommensurate States of Twist

    Get PDF
    We construct a coarse-grained model of parallel actin bundles crosslinked by compact, globular bundling proteins, such as fascin and espin, necessary components of filapodial and mechanosensory bundles. Consistent with structural observations of bundles, we find that the optimal geometry for crosslinking is overtwisted, requiring a coherent structural change of the helical geometry of the filaments. We study the linker-dependent thermodynamic transition of bundled actin filaments from their native state to the overtwisted state and map out the "twist-state'' phase diagram in terms of the availability as well as the flexibility of crosslinker proteins. We predict that the transition from the uncrosslinked to fully-crosslinked state is highly sensitive to linker flexibility: flexible crosslinking smoothly distorts the twist-state of bundled filaments, while rigidly crosslinked bundles undergo a phase transition, rapidly overtwisting filaments over a narrow range of free crosslinker concentrations. Additionally, we predict a rich spectrum of intermediate structures, composed of alternating domains of sparsely-bound (untwisted) and strongly-bound (overtwisted) filaments. This model reveals that subtle differences in crosslinking agents themselves modify not only the detailed structure of parallel actin bundles, but also the thermodynamic pathway by which they form.Comment: Main Text (25 pages, 7 figures) with supporting material (12 pages, 9 figures, 2 tables

    The structure of the cuticular plate, an in vivo actin gel.

    Full text link

    Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram

    Get PDF
    Background: Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments.Methods: A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams.Results: Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted.Conclusions: The results indicated that the layout of a process map does influence perceptions of quality and safety problems in a process. In quality improvement work it is important to carefully consider the type of process map to be used and to consider using more than one map to ensure that different aspects of the process are captured

    Islands of conformational stability for Filopodia

    Get PDF
    Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work

    Stability in Bullying and Victimization and its Association with Social Adjustment in Childhood and Adolescence

    Get PDF
    This study examined the concurrent and longitudinal associations between stability in bullying and victimization, and social adjustment in childhood and adolescence. Participants were 189 girls and 328 boys who were studied in primary school and in secondary school. The mean age of the participants was 11.1 years in primary school and 14.1 years in secondary school. The measures consisted of peer reported social and personal characteristics. Children who bullied in childhood and adolescence were less liked and more disliked in childhood, and more aggressive and disruptive both in childhood and adolescence, than children who bullied only in childhood or adolescence. Children who bullied or who were victimized only in childhood did not differ largely in adolescence from the children that were never bullies or victims. Children who were victimized in adolescence closely resembled those who were victimized in childhood and adolescence in terms of being liked or disliked, being nominated as a friend, and shyness. The study stresses the need to distinguish between stable and transient bullies and victims

    Characterization of the Drosophila Ortholog of the Human Usher Syndrome Type 1G Protein Sans

    Get PDF
    BACKGROUND: The Usher syndrome (USH) is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 1 RO1 NS18682)National Institutes of Health (Training Grant 5 T32 NS07047)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 1 F33 NS07202-01)National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS16917)National Institutes of Health (Grant 1 RO1 NS14092-05)National Science Foundation (Grant BNS 77 21751)National Institutes of Health (Grant 5 R01 NS11080)National Institutes of Health (Grant GM-21189

    A Modular BAM Complex in the Outer Membrane of the α-Proteobacterium Caulobacter crescentus

    Get PDF
    Mitochondria are organelles derived from an intracellular α-proteobacterium. The biogenesis of mitochondria relies on the assembly of β-barrel proteins into the mitochondrial outer membrane, a process inherited from the bacterial ancestor. Caulobacter crescentus is an α-proteobacterium, and the BAM (β-barrel assembly machinery) complex was purified and characterized from this model organism. Like the mitochondrial sorting and assembly machinery complex, we find the BAM complex to be modular in nature. A ∼150 kDa core BAM complex containing BamA, BamB, BamD, and BamE associates with additional modules in the outer membrane. One of these modules, Pal, is a lipoprotein that provides a means for anchorage to the peptidoglycan layer of the cell wall. We suggest the modular design of the BAM complex facilitates access to substrates from the protein translocase in the inner membrane

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on eight research projects split into three sections.National Institutes of Health (Grant 2 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 R01 NS10916)National Institutes of Health (Grant 1 RO NS 16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS21322-01)National Institutes of Health (Grant 5 T32-NS07099-07)National Institutes of Health (Grant 1 RO1 NS14092-06)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 RO1 NS11080
    • …
    corecore