502 research outputs found

    Intra-articular knee haemangioma originating from the anterior cruciate ligament: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Synovial haemangioma is a rare intra-articular benign tumour, which may arise from any synovium-lined surface, but particularly in the knee joint. Synovial haemangioma originating from the anterior cruciate ligament has not been reported previously.</p> <p>Case presentation</p> <p>A 34-year-old man presented with a history of intermittent knee pain, locking and swelling.</p> <p>Conclusion</p> <p>Knee intra-articular haemangioma, a very rare benign tumour, is often misdiagnosed. Magnetic resonance imaging is effective in detecting this lesion and should be performed in cases of persistent knee swelling and pain.</p

    Advanced Electrocardiographic Predictors of Sudden Death in Familial Dysautonomia

    Get PDF
    To identify accurate predictors for the risk of sudden death in patients with familial dysautonomia (FD). Ten-minute resting high-fidelity 12-lead ECGs were obtained from 14 FD patients and 14 age/gender-matched healthy subjects. Multiple conventional and advanced ECG parameters were studied for their ability to predict sudden death in FD over a subsequent 4.5-year period, including multiple indices of linear and non-linear heart rate variability (HRV); QT variability; waveform complexity; high frequency QRS; and derived Frank-lead parameters. Four of the 14 FD patients died suddenly during the follow-up period, usually with concomitant pulmonary disorder. The presence of low vagally-mediated HRV was the ECG finding most predictive of sudden death. Concomitant left ventricular hypertrophy and other ECG abnormalities such as increased QTc and JTc intervals, spatial QRS-T angles, T-wave complexity, and QT variability were also present in FD patients, suggesting that structural heart disease is fairly common in FD. Although excessive or unopposed cardiac vagal (relative to sympathetic) activity has been postulated as a contributor to sudden death in FD, the presence of low vagally-mediated HRV was paradoxically the best predictor of sudden death. However, we suggest that low vagally-mediated HRV be construed not as a direct cause of sudden death in FD, but rather as an effect of concurrent pathological processes, especially hypoxia due to pulmonary disorders and sleep apnea, that themselves increase the risk of sudden death in FD and simultaneously diminish HRV. We speculate that adenosine may play a role in sudden death in FD, possibly independently of vagal activity, and that adenosine inhibitors such as theophylline might therefore be useful as prophylaxis in this disorder

    Proteomic analysis and biochemical correlates of mitochondrial dysfunction following low-intensity primary blast exposure

    Get PDF
    Service members during military actions or combat training are frequently exposed to primary blasts by weaponry. Most studies have investigated moderate or severe brain injuries from blasts generating overpressures over 100-kPa, while understanding the pathophysiology of low-intensity blast (LIB)-induced mild traumatic brain injury (mTBI) leading to neurological deficits remains elusive. Our recent studies, using an open-field LIB-induced mTBI mouse model with an peak overpressure at 46.6-kPa, demonstrated behavioral impairments and brain nanoscale damages, notably mitochondrial and axonal ultrastructural changes. In this study, we used tandem mass tagged (TMT) quantitative proteomics and bioinformatics analysis to seek insights into the molecular mechanisms underlying ultrastructural pathology. Changes in global- and phospho-proteomes were determined at 3 and 24 hours, 7 and 30 days post injury (DPI), and to investigate the biochemical and molecular correlates of mitochondrial dysfunction. Results showed striking dynamic changes in a total of 2216 global and 459 phosphorylated proteins at vary time points after blast. Disruption of key canonical pathways included evidence of mitochondrial dysfunction, oxidative stress, axonal/cytoskeletal/synaptic dysregulation, and neurodegeneration. Bioinformatic analysis identified blast induced trends in networks related to cellular growth/development/movement/assembly and cell-to-cell signaling interactions. With observations of proteomic changes, we found LIB-induced oxidative stress associated with mitochondrial dysfunction mainly at 7 and 30 DPI. These dysfunctions included impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated respiration-relevant enzyme activities. Insights on the early pahtogenesis of primary LIB-induced brain damage provide a template for further characterization of its chronic effects, identification of potential biomarkers and targets for intervention.Hailong song (1), Mei Chen (6), Chen Chen (2), Jiankun Cui (1,7), Catherine Johnson (3), Jianlin Cheng (2), Xiaowan Wang (4), Russell H. Swerdlow (4), Ralph DePalma (5), Weiming Xia (6), Zezong Gu (1,7) ; 1. Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine; 2. Department of Computer Sciences, University of Missouri; 3. Department of Mining and Nuclear Engineering, Missouri University of Science and Technology; 4. Department of Neurology, University of Kansas Medical Center; 5. Office of Research and Development, Department of Veterans Affairs; 6. Bedford VA Medical Center; 7. Truman VA Hospital Research Servic

    Awareness and use of intertrochanteric osteotomies in current clinical practice. An international survey

    Get PDF
    Current literature shows that intertrochanteric osteotomies can produce excellent results in selected hip disorders in specific groups of patients. However, it appears that this surgical option is considered an historical one that has no role to play in modern practice. In order to examine current awareness of and views on intertrochanteric osteotomies among international hip surgeons, an online survey was carried out. The survey consisted of a set of questions regarding current clinical practice and awareness of osteotomies. The second part of the survey consisted of five clinical cases and sought to elicit views on preoperative radiological investigations and preferred (surgical) treatments. The results of our survey showed that most of these experts believe that intertrochanteric osteotomies should still be performed in selected cases. Only 56% perform intertrochanteric osteotomies themselves and of those, only 11% perform more than five per year. The responses to the cases show that about 30–40% recommend intertrochanteric osteotomies in young symptomatic patients. This survey shows that the role of intertrochanteric osteotomies is declining in clinical practice

    Chaperonin Containing T-Complex Polypeptide Subunit Eta (CCT-eta) Is a Specific Regulator of Fibroblast Motility and Contractility

    Get PDF
    Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression

    Burden of Rare Sarcomere Gene Variants in the Framingham and Jackson Heart Study Cohorts

    Get PDF
    Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis

    Clinical and radiological evaluation of Trabecular Metal and the Smith–Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up

    Get PDF
    A prospective, randomized, controlled study was carried out to compare the radiological and clinical outcomes after anterior cervical decompression and fusion (ACDF) with Trabecular Metal™ (TM) to the traditional Smith–Robinson (SR) procedure with autograft. The clinical results of cervical fusion with autograft from the iliac crest are typically satisfactory, but implications from the donor site are frequently reported. Alternative materials for cervical body interfusion have shown lower fusion rates. Trabecular Metal is a porous tantalum biomaterial with structure and mechanical properties similar to that of trabecular bone and with proven osteoconductivity. As much as 80 consecutive patients planned for ACDF were randomized for fusion with either TM or tricortical autograft from the iliac crest (SR) after discectomy and decompression. Digitized plain radiographic images of 78 (98%) patients were obtained preoperatively and at 2-year follow-up and were subsequently evaluated by two senior radiologists. Fusion/non-fusion was classified by visual evaluation of the A–P and lateral views in forced flexion/extension of the cervical spine and by measuring the mobility between the fused vertebrae. MRI of 20 TM cases at 2 years was successfully used to assess the decompression of the neural structures, but was not helpful in determining fusion/non-fusion. Pain intensity in the neck, arms and pelvis/hip were rated by patients on a visual analog scale (VAS) and neck function was rated using the Neck Disability Index (NDI) the day before surgery and 4, 12 and 24 months postoperatively. Follow-ups at 12 and 24 months were performed by an unbiased observer, when patients also assessed their global outcome. Fusion rate in the SR group was 92%, and in the TM group 69% (P < 0.05). The accuracy of the measurements was calculated to be 2.4°. Operating time was shorter for fusion with TM compared with autograft; mean times were 100 min (SD 18) and 123 min (SD 23), respectively (P = 0.001). The patients’ global assessments of their neck and arm symptoms 2 years postoperatively for the TM group were rated as 79% much better or better after fusion with TM and 75% using autograft. Pain scores and NDI scores were significantly improved in both groups when compared with baseline at all follow-ups, except for neck pain at 1 year for the TM group. There was no statistically significant difference in clinical outcomes between fusion techniques or between patients who appeared radiologically fused or non-fused. There was no difference in pelvic/hip pain between patients operated on with or without autograft. In our study, Trabecular Metal showed a lower fusion rate than the Smith–Robinson technique with autograft after single-level anterior cervical fusion without plating. There was no difference in clinical outcomes between the groups. The operative time was shorter with Trabecular Metal implants

    Attentional capture by alcohol-related stimuli may be activated involuntarily by top-down search goals

    Get PDF
    Previous research has found that the attention of social drinkers is preferentially oriented towards alcohol related stimuli (attentional capture). This is argued to play a role in escalating craving for alcohol that can result in hazardous drinking. According to Incentive theories of drug addiction, the stimuli associated with the drug reward acquire learned incentive salience, and grab attention. However, it is not clear whether the mechanism by which this bias is created is a voluntary or an automatic one, although some evidence suggests a stimulus-driven mechanism. Here we test for the first time whether this attentional capture could reflect an involuntary consequence of a goal-driven mechanism. Across three experiments, participants were given search goals to detect either an alcoholic or a non-alcoholic object (target) in a stream of briefly presented objects unrelated to the target. Prior to the target, a task-irrelevant parafoveal distractor appeared. This could either be congruent or incongruent with the current search goal. Applying a meta-analysis, we combined the results across the three experiments and found consistent evidence of goal-driven attentional capture; whereby alcohol distractors impeded target detection when the search goal was for alcohol. By contrast, alcohol distractors did not interfere with target detection while participants were searching for a non-alcoholic category. A separate experiment revealed that the goal-driven capture effect was not found when participants held alcohol features active in memory but did not intentionally search for them. These findings suggest a strong goal-driven account of attentional capture by alcohol cues in social drinkers

    Mechanisms of congenital heart disease caused by NAA15 haploinsufficiency

    Get PDF
    Rationale: NAA15 is a component of the N-terminal (Nt) acetyltransferase complex, NatA. The mechanism by which NAA15 haploinsufficiency causes congenital heart disease (CHD) remains unknown. To better understand molecular processes by which NAA15 haploinsufficiency perturbs cardiac development, we introduced NAA15 variants into human induced pluripotent stem cells (iPSCs) and assessed the consequences of these mutations on RNA and protein expression. Objective: We aim to understand the role of NAA15 haploinsufficiency in cardiac development by investigating proteomic effects on NatA complex activity, and identifying proteins dependent upon a full amount of NAA15. Methods and Results: We introduced heterozygous LoF, compound heterozygous and missense residues (R276W) in iPS cells using CRISPR/Cas9. Haploinsufficient NAA15 iPS cells differentiate into cardiomyocytes, unlike NAA15-null iPS cells, presumably due to altered composition of NatA. Mass spectrometry (MS) analyses reveal ~80% of identified iPS cell NatA targeted proteins displayed partial or complete Nt-acetylation. Between null and haploinsufficient NAA15 cells Nt-acetylation levels of 32 and 9 NatA-specific targeted proteins were reduced, respectively. Similar acetylation loss in few proteins occurred in NAA15 R276W iPSCs. In addition, steady-state protein levels of 562 proteins were altered in both null and haploinsufficient NAA15 cells; eighteen were ribosomal-associated proteins. At least four proteins were encoded by genes known to cause autosomal dominant CHD. Conclusions: These studies define a set of human proteins that requires a full NAA15 complement for normal synthesis and development. A 50% reduction in the amount of NAA15 alters levels of at least 562 proteins and Nt-acetylation of only 9 proteins. One or more modulated proteins are likely responsible for NAA15-haploinsufficiency mediated CHD. Additionally, genetically engineered iPS cells provide a platform for evaluating the consequences of amino acid sequence variants of unknown significance on NAA15 function
    corecore